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A method is described for calculating the displacement response function tensor for an infinite 
anisotropic elastic continuum subjected to a concentrated point force with Heaviside step 
function time dependence, and examples of computed response functions for zinc, diamond, and 
silicon are provided. Particular attention is given to the singularities of various orders that travel 
outward from the point of excitation on the wave surface. The commonly occurring forms that 
these wave arrival singularities take are described, and explanation provided of how they arise. 
Some of the singularity types mentioned here have not previously been noted in the literature. 
Computed response functions for silicon and zinc are compared with waveforms measured in 
these crystals using the capillary fracture technique. 

PACS numbers: 43.35.Cg 

INTRODUCTION 

The dynamic response functions of elastically aniso- 
tropic solids are of interest in many fields including crystal 
acoustics, solid state physics, nondestructive testing, mate- 
rials characterization, seismology, applied mechanics, and 
mathematics. Important general properties of these re- 
sponse functions have been found in the past, but there are 
only a few situations for which analytical closed form so- 
lutions exist, and numerical methods and approximations 
play an important role in the interpretation of experimen- 
tal data. Asymptotic far-field solutions are the underpin- 
ning of ray acoustics, which is widely used in the interpre- 
tation of phonon images • and other such phenomena where 
the wavelengths of the acoustic waves or phonons are very 
short in comparison with the propagation distances. Pho- 
non images are dominated by the presence of caustics in 
the energy flux, which is essentially a far-field phenome- 
non. Recently a number of ultrasonic experiments have 
been reported 2-9 in which the far-field condition is not as 
well satisfied, and their interpretation has required going 
beyond the ray approximation. Some of these experiments 
have involved ultrasonic tone bursts or the examination of 

individual Fourier components of more complex signals. In 
the spatial variation of the signals the broad overall appear- 
ance of the focusing pattern is preserved, but the caustics 
are broadened into an overlapping pattern of diffraction 
fringes and lose their individual identity. The general fea- 
tures of these diffraction patterns are well accounted for on 
the basis of computed frequency domain dynamic Green's 
functions. 5'8 

There are a number of experiments that have recently 
been performed or are in progress, which examine the re- 
sponse of anisotropic solids to impulsive forces or forces 
with step function time dependence. These make use of 

techniques such as capillary fracture and laser excitation to 
produce the concentrated force or combination of force 
couples. The interpretation of these experiments requires 
the computation of the time domain dynamic response 
functions for the media being studied. 

The purpose of this paper is to describe a method for 
calculating the dynamic response of an infinite anisotropic 
elastic continuum of general symmetry to a concentrated 
.point force having Heaviside step function time depen- 
dence. The dynamic Green's function tensor, i.e., the re- 
sponse to an impulsive force, may be obtained by differen- 
tiating the dynamic response with respect to time. Much of 
the emphasis of this paper is on the singularities, or sharp 
features, that appear in these response functions, and on 
providing an explanation for how they arise. These singu- 
larities are located on the wave surface and propagate out- 
ward at group velocity from the point of excitation and are 
known as wave arrivals. The surface consists of three 

sheets, the inner two of which may be folded, and the 
number of wave arrivals in a particular medium and direc- 
tion could be as high as 75 (see Ref. 10). Many of the 
characteristic singularities that occur have been identified 
previously in the literature, but some are reported here for 
the first time. Through a number of numerical examples we 
illustrate the presence of these various singular features in 
the response functions of actual materials. These singular- 
ities survive in the dynamic response functions of elastic 
half spaces, plates and other bounded geometries, being 
augmented there by singularities at wave fronts pertaining 
to various reflection and mode conversion sequences and 
head waves. The response functions presented here thus 
provide the basis for at least a partial interpretation of data 
measured on finite test specimens. In Sec. IV we compare 
computed response functions for silicon and zinc with 
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waveforms measured in these crystals using the capillary 
fracture technique. Prior to the arrival of reflected waves, 
and within the angular range where head wave effects are 
not pronounced, there is good agreement between theory 
and experiment. 

I. DYNAMIC RESPONSE FUNCTION TENSOR 

We consider here the displacement response Gsp(X,t) 
at point x and time t of an infinite anisotropic elastic con- 
tinuum subjected at the origin to a concentrated point 
force with Heaviside step function time dependence 

0, t<0, 

O(t)-- 1, t>0. (1) 
The governing equation for Gsp(X,t) is 

plir• •-fl--Crt•m C9X•Xm •sp(X,t)=lir•(X)O(t), (2) 
where p is the density and Crlsm is the elastic stiffness ten- 
sor for the medium, and s and p refer to the sensing and 
forcing directions, respectively. The components of 
Gsp(X,t) transform as a second rank tensor. The applica- 
tion of integral transforms to this and related Green's func- 
tion equations is well documented. 1ø-22 The approach we 
take here follows closely on that used in Ref. 8, in which 
we have treated the frequency domain Green's function. 
On carrying out a quadruple space-time Fourier transform 
on Eq. (2) we obtain 

L rs ( k, co ) •sp ( k, co ) = [ 1/ ( 2 rr ) 3 ] eS rpf ( co ) , (3) 
where 

Lrs( k, co ) = Crlsmklkm -- iOco2•rs, (4) 
and f(co) = -- 1/2•rico+6(co)/2 is the Fourier transform of 
O(t). On solving Eq. (3) and carrying out the inverse 
Fourier transform we obtain 

Gsp(X,t) = Gsp(X,co)f(co)e -iøt dco, (5) 

where 

Gsp (x,co) = (2rr) 3 d3k [ L- • (k, co ) ] spe m' x ( 6 ) 
is the frequency domain Green's function for the medium. 
Using the spectral resolution theorem, •6 we can write 

3 A(j) 3 $(J)2A(J) 

- -sp j• - -sp (Z-1)sp: Z po(J)2k2 = k 2 025(J)2) /=1 --/902 '=1 /9( -- ' 
(7) 

where the sum is taken over the three eigenvalues po(J)2k2 
of the tensor I'rs=Crlsmklkm, o © is the phase velocity and 
s(J)= 1/v (j) the slowness, and A•p j) = U• j) Uv(J), x0here U © 
is the eigenvector associated with po(J)2k2.' In performing 
the integration in Eq. (6) it is convenient to orient the k 3 
axis in the direction of x and transform to polar coordi- 
nates so that k= k(sin 0 cos •b, sin 0sin •b, cos 0) and 
d3k--,df! k 2 dk, where dfl=d(cos O)dc) is the element of 
solid angle in k space. Integration with respect to k is 

facilitated by taking the limits to be -- o• to o• rather than 
0 to o•, and to compensate, the angular integral is taken 
only over the forward unit hemisphere for which cos 0>0, 
rather than over the entire sphere. The poles that are en- 
countered in the k integral are handled by ascribing a small 
positive imaginary part ie to co, corresponding to the slow 
switching on of the force. The path of integration is then 
completed in the upper or lower half complex plane de- 
pending on the sign of x cos 0. This leads to the result 

3 Gsp(X,co) = Z 8yr2p dfl sCj)3A(J)e iøs(j)'x j=l 

+ 8•px d& s(J)2A(J) ._•p . (8) 

The first term is a surface integral taken over the forward 
hemisphere, and the second one is a line integral taken 
around the pehphery of this hemisphere. The factor A (/) ' -sp 

= U3 j) U} j) represents the weighting for each plane wave 
contributing to Gsp (x,•), and depends on the projection of 
the polarization vector of that wave on the sensing and 
forcing directions. 

On combining Eqs. (5) and (8) and integrating with 
respect to time one obtains the corresponding expression 
for the time domain response function 

•sp(X't) = • 8•p d• s(J)3A(J)•(t--s(J)'x) ' -sp 
j=l 

o(t) + 8•px d• s(7)2A © ._•p . (9) 

We have used Fourier transforms in deriving •. (9) for 
consistency with the related study we have undertaken in 
Reft 8, but it should be pointed out that there are other 
more direct methods of arriving at this result. One such is 
to proceed from Eq. (4.6) of Burridge •4 which expresses 
the Green's function, i.e., response to a 6(t) force, as an 
integral over the sphere, and in which the generalized dis- 
tribution function •' (t--s (j). x) appears in the integrand. 
Burridge's expression, as it stands, is not very suitable for 
numehcal computations, and it is advantageous to inte- 
grate i•, with respect to time, to obtain •sp(X,t). Integrat- 
ing by parts yields two terms, a line integral, which is the 
second term in Eq. (9), and a surface integral over the unit 
sphere, which on dropping the integral over the second 
hemisphere which is zero, becomes the first tern in Eq. 
(9). Yeatts •6 has derived a similar result to that of Burr- 
idge, but more general, using Radon transfores. 

There are only a few special cases for which closed 
fore solutions for the integrals in Eq. (8) are known, no- 
tably for isotropic media, 23'24 along the zonal axis of trans- 
versely isotropic media • and for certain special values of 
the elastic constants which lead to uncoupling of the equa- 
tions of motion and render the slowness surface in the fore 

of three concentric ellipsoids. 25'26 Barring these special 
cases, the integrals in Eq. (9) require numerical methods 
for their evaluation. 

The first term in Eq. (9), because it involves 2-D in- 
tegration, is the most CPU intensive. The prope•ies of the 
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•i function could be used to reduce this surface integral to 
a line integral summed over directions for which 
t--$ (j) o x=0, which have to be located numerically. How- 
ever, there is no clear-cut advantage_to doing this when it 
is the entire time dependence of Gsp(X,t) that is being 
sought. In this case it is simpler, and not necessarily more 
demanding on computer time, to perform the 2-D integra- 
tion as a sorting and counting process. The time interval 
between t=O and the arrival of the last wave, i.e., the 
largest value of s (j). x, is divided into N slots, which in our 
calculations has been taken to be 240. A rectangular grid of 
cos 0, •b points is chosen, and for each one the value of 
s(J).x determines the slot in which the corresponding 
value (j)3 (j) of s Asp is accumulated. Typically we find that by 
taking a 2000 X2000 grid of points the noise level in the 
results is reduced to an a_cceptable value; the singularities 
are sharply defined and G is reasonably smooth to the eye 
at other times (a finer grid of points is required to achieve 
the same quality on a finer time scale). The computational 
time for such a calculation on an IBM3083 computer is of 
the order of 5 to 10 min. From a mathematical point of 
view this procedure is analogous to determining the fre- 
quency distribution function for the vibrations of a two- 
dimensional lattice. The analogy is an apt one, since here 
too there occur van Hove type singularities. 27 These are 
discussed in the next section. For times exceeding the max- 
imum of all the $(J)'x, •sp(X,t) has the constant value 
given by the second term in Eq. (9), which is the static 
Green's function of the medium. This second term is equiv- 
alent to the expression given by Barnett 28 for the static 
Green's function. At these later times the res•ponse to an 
impulsive force, obtained by differentiating G•p(X,t) with 
respect to t, is zero, representing a lacuna in the Green's 
function. 1ø 

II. WAVE ARRIVAL SINGULARITIES 

Singularities in the time dependence of Gsp(X,t) occur 
for points on the slowness surface where s (j). x is station- 
ary, and this for fairly obvious geometrical reasons is 
where the outward normal to the slowness surface, or ray 
vector, is parallel to x. These singularities propagate out- 
ward from the source at group velocity V in any direction, 
and are known as wave arrivals. Collectively they lie on the 
wave surface, which is the group velocity surface scaled in 
size by a factor t. There are a number of different singular 
forms that these wave arrivals can take, depending on 
whether the associated point (or points) on the slowness 
surface is generic or not, what the curvature of the slow- 
ness surface there is, and whether the point lies in a sym- 
metry direction or not. In symmetry directions different 
components of the response function tenso_r may exhibit 
different singular forms. The behaviour of Gsp(X,t) in the 
immediate vicinity of a wave arrival is found by approxi- 
mating the equation of the slowness surface and if neces- 
sary also Ars as a low-order polynomial and carrying out 
the integration analytically. Listed below are the more 
common forms that these singularities can take, together 
with some explanation of the way they arise. Examples of 

typical computed response functions exhibiting these sin- 
gularities are provided in the following section. The line 
integral in Eq. (9) is not considered here since it is a 
constant and does not contribute to the singular behavior. 

A. Elliptic points on the slowness surface 

The slowness surface is said to be elliptic when it is 
either convex or concave, i.e., both principal curvatures are 
of the same sign. The nature of the singular behavior for 
&eneric points of this type is the same for all components of 
G•p (x,t) and does not depend on which branch of the wave 
surface (longitudinal, slow transverse or fast transverse) 
the wave arrival is associated with. For the purpose of 
discussion we may therefore suppress th_e indices sp and j. 
We consider the singular behavior of G(x,t) close to the 
time to of the wave arrival associated with the point So on 
the slowness surface. The singularity propagates outwards 
at group velocity V = X/to, which is normal to the slowness 
surface at So. From the polar reciprocal relationship be- 
tween So and V, So' V =sV cos •b= 1, where •b_is the angle 
between So and V. The singular behavior of G(x,t) is de- 
termined by the shape of the slowness surface in the im- 
mediate vicinity of So, and confining the surface integral in 
Eq. (8) to a small region around that point. In a local 
system of coordinates with origin located at So, s3 taken 
normal to the slowness surface (i.e., in the direction of x) 
and s• and s2 pointing in the directions of principal curva- 
ture ß of the slowness surface, we have that 

d• • ds 1 ds 2 cos lfi/4 - ds 1 ds 2 (Vsg) - 1, s3 • sg, A ,• con- 
stant, s3 =- (a•4./3•)4.'", where 2a and 2/• are the 
two principal curvatures of the slowness surface (both pos- 
itive if the surface is convex or both negative if the surface 
is concave), and s. x = So' x 4-s3x, where x = I x I. Hence, 
s 'x=s0' Vt0-- (_a• 4-/•)x=t 0-- (a• 4-/•)x. The singu- 
lar behavior of G(x,t) therefore derives from an integral of 
the form 

--VA f as2 6(T+ (lO) 

where T=t•to and F=(8•r2pV) -•. For T the same sign 
as a and/•, G(x,t)=0. For T opposite in sign to a and/• 
we proceed as follows. On substituting s•-- a- 1/2x- •/2u 
and s2=[3-•/2x - •/2v we obtain 

xfx du dv I TI +u2+v2). (11) 

The integration with respect to u is carried out by making 
use of the identity 

6(f(u))= Z 
i 

of 
-1 

(12) 

where the derivatives are evaluated at the roots of f(u)=0 
to yield, after substituting v= I Tl•/2y and integrating with 
respect to y 

G(x,T) --• 
--FAir O(--T), a,/3>O, 

xfx O(T), a,t<O. 
(13) 
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Thus G(x,T) exhibits a discontinuity or jump at 
T_ = 0. The sign of the jump for the diagonal components of 
Gsp(x,T) is the same as that of a and B, since for those 
components A>0, whereas for the off-diagonal compo- 
nents the jump may be of either sign. The magnitude of the 
discontinuity is inversely proportional to the square root of 
K=4aB, the Gaussian curvature of the slowness surface. 
This result is linked to the phenomenon of pronon 
focusing, 1'29 whereby the energy flux radiated from a point 
source in the ray approximation is inversely proportional 
to K. The discontinuity is essentially a far-field effect, being 
dominated by high-frequency Fourier components of the 
response, and falling off inversely with the first power of 
distance. Near lines of zero Gaussian curvature on the 

slowness surface the magnitude of the discontinuity be- 
comes very large, and a higher order approximation for the 
equation of the slowness surface is required, as discussed 
below. Likewise, if the forcing or sensing direction is per- 
pendicular to the polarization vector for So, or nearly so, 
then I AI •1 and the discontinuity is very small, and an 
expansion for A (s) is required in order to arrive at a more 
accurate description of the singular behavior. The way this 
arises in the presence of symmetry is discussed later. 

B. Hyperbolic points on the slowness surface 

When one of the principal curvatures, say 2a, is neg- 
ative and the other one positive the slowness surface is 
saddle shaped and said to be hyperbolic. Following a sim- 
ilar procedure to that outlined above, on integrating with 
respect to u one arrives, for T > O, at 

... --FA f dv /-atSx x/T+v 2' 
where the limits of the integral over o are taken large but 
not infinite to avoid an unphysical divergence. The integral 
evaluates approximately to --ln(T)-3- a constant. For 
T < 0 the same result is obtained by repl_acing T by --T, 
and it follows therefore that, near T--0, G(x,T) exhibits a 
logarithmic divergence given by 

.- FAln(ITI) 

G(x,r)= x/_otlSx . (15) 
The above results for elliptic and hyperbolic points 

have been noted in a number of papers in the past, includ- 
ing Buchwald, 13 Burridge, TM and Cameron and:Eason, 15 
and are discussed in detail in the book by Payton. 11 We 
have repeated the derivations here to establish the method 
by which some of the previously undisclosed results dis- 
cussed below are obtained. 

C. Elliptic and hyperbolic points in a symmetry plane 

For So lying in a mirror symmetry plane of the me- 
dium, but not on an acoustic axis, x lies in this plane as 
well, and the polarization vector U(so) is located either in 
or perpend. jcular to this plane. Let the coordinate frame to 
which x, Gsp (x,t) and U are referred be located such that 
x 1 and x 3 lie in the plane and_ x2 is_ perp•ndi•lar to the 
plane. On symmetry grounds (J12 = (J21 = (J32 = (J23 --=0. For 

the pure transverse mode U(so) = (0,1,0) and 
All($o)=A33($0)=A13($0)=A31(•0)•0, and_as a result 
the corresponding components of Gs•, (but not G22) display 
at the wave arrival not a discontinuity, but a lower order 
singularity. To ascertain the form of this singularity we 
expand A(s) in powers of Sl and s2, with s 3 as usual being 
in the direction of x. On symmetry grounds the directions 
of principal curvature are in and perpendicular to the sym- 
metry plane and in addition the weighting factor takes on 
the simple form A(s)=a• +"-, where a is a constant. For 
a mode that is polarized in the symmet_ry plane, it is A22 (s) 
instead that is expanded and thus G22 that exhibits the 
lower order singularity. 

For convex or concave slowness surface we have 

O(x,T) = --Fa ; ds 1 d$2 4•( r-Jr- [og•21-Jr-•4]x). (16) 
For T having the same sign as that of a and/5, G(x,t) =0. 
For T opposite in sign to a and/5 Eq. (15) becomes, on 
substituting sl =a- 1/2x- 1/2u and s2=B- 1/2x- 1/2o, 

G(x,T) = •X 2 du dv/12•j(- I TI '3-U2'3-/12), 

and hence 

(17) 

... --Fa f T77 dv v 2 II (18) 

The integral evaluates to (rr/2) lTI and thus the singular 
behavior takes the form 

- --Fart I TIO(--T), a,/5>0, 
G(x'T):2xfx2 ITIO(T), a,B<0. (19) 

Thus G(x,T)_ is continuous but has a kink, i.e., its time 
derivative c9G/c•T exhibits a discontinuity at T=0. The 
magnitude of this discontinuity falls off with distance as 
1/x 2, characterizing this as a near-field effect. A simple 
explanation for the 1/x 2 dependence is that •(x,T) scales 
inversely with x, and to scale_s linearly with x, and therefore 
on dimensional grounds c•G/c•T scales as 1Ix 2. Similar 
analysis, when the slowness surface is saddle shaped, shows 
that G(x,T) is continuous but its time derivative exhibits a 
logarithmic divergence given by 

oqG(x,T) -Fa lnl TI 
c•T -- 2 xf-•--•x 2 ' 

(20) 

If the wave surface happens to be folded, which is a 
common feature of anisotropic solids, there may be one or 
more wave arrival in a symmetry plane which is associated 
with an So that does not lie in that plane. The correspond- 
ing mode is thus unlikely to be polarized either in or per- 
pendicular to the symmetry plane, and in general therefore 
all the components of Gsp will display the same jump or 
logarithmic singularity. 
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D. The pure transverse mode in transversely 
isotropic media 

In hexagonal crystals and other transversely isotropic 
elastic solids, for any direction of propagation there is one 
pure transverse mode, polarized in the plane normal to the 
principal symmetry axis. With the x3 axis located along 
this symmetry axis, it follows that for the pure transverse 
mode A33=A31=A13=A32=A23=0 for all s. Therefore 
the pure trans_verse_mod_e do? not cont_ribute at all to the 
components (733 , (731, (713, (732, and (723 of the response 
function, and consequently there is no singularity at all for 
these components at the wave arrival. Since all planes con- 
taining the x3 axis are equivalent symmetry planes, one 
may with no loss of generality locate_ the _x 1 axi_s in t_he 
plane_containing x. It follows that G12=G21=G32=(723 
=0, G22 exhibits a discontinuity while Gi• displays a kink 
at the pure transverse wave arrival. 

Near to fourfold symmetry axes in cubic and tetrago- 
nal media, in certain elastic constant ranges encompassing 
isotropy, the polarization patterns for the two transverse 
modes resemble very closely those of the transverse (T) 
and quasitransverse (qT) modes in transverse isotropy, be- 
ing approximately radial and circumferential with respect 
to the symmetry axis. 3ø The conditions on •'sp obtained 
above therefore to a good approximation hold also for 
those media. This is the underlying reason why, for in- 
stance, the fast transverse (FT) modes are not in evidence 
in the laser-generated results of Every et al. 2'3 on (100} 
oriented silicon. 

E. Parabolic points on the slowness surface 

Lines of zero curvature on the slowness surface, 
known as parabolic lines, correspond to folds (cuspidal 
edges) in the wave surface, and in the ray approximation 
to line caustics in the energy flux. 1 On the inside of the fold 
there are two closely spaced wave arrivals corresponding to 
points Sa and so on either side of the parabolic line where 
the slowness surface is saddle shaped and convex (or con- 
cave), respectively. As the fold is approached, the Gauss- 
ian curvatures at $a and so tend to zero and so the magni- 
tudes of the discontinuity and logarithmic divergence grow 
very large and these singularities arrive progressively closer 
in time. Precisely at the fold, there is only one wave arrival 
carrying with it a singularity of higher order. For a generic 
point So on the parabolic line (where Sa and so meet), one 
of the principal curvatures, say 2/•, is zero. There is no loss 
of generality if we take a > 0. The power series expansion 
for the slowness surface must now be taken to higher order 

13 31 in s 2, and it is sufficient ' to take it as s3=--(a • 
+ ys32)+..., where 1' is a positive constant (the direction 
o_f s2 is chosen to make it so). The singular behavior of 
G(x,T) is thus given by 

•(x,T)=--FA f ds 1 ds 2 •(T+ [a•+rs}]x). (21) 
On substituting Sl=•-I/2x-1/2U and S2=1'-1/3X-1/30 we 
obtain 

- --FA f G(x,T) =al/2yl/3xS/6 du dv •( rq-u2q-o3), (22) 
which on carrying out the integration yields 

- -- FAg(sgn (r)) 

G(x,T) =al/2y1/3xS/61TI 1/6, (23) 
where g( q- )=2.429 and g(- )----4.206. Thus G(x,T) ex- 
hibits a 1/I T 11/6 divergence at the wave arrival with a 
1Ix 5/6 dependence on distance characteristic of the wave 

1 field at a line caustic. 13 The number a=• is known as the 
singularity index for the fold caustic. 32 

The two sheets of the wave surface terminate at the 

fold edge, and beyond the edge there is no wave arrival and 
thus no singular feature in the mathematical sense. Never- 
theless, a deep nonsingular minimum persists in (7(x,T), 
falling off as --• 171/5x21 •/4, where 6x2 is the distance, mea- 
sured in the direction of s2, from the point x on the cusp- 
idal edge. Such quasisingular features are a common pres- 
ence in computed response functions, and examples of 
them can be found in Sees. III and IV. 

In symmetry planes, as seen earlier, A may vanish and 
an expansion for A is required. The divergence in this case 
is replaced by a lower order singularity in which G(x,T) is 
continuous but its time derivative 

o•G(x, T) --F ag(sgn (r)) 

OT --2rz3/21'l/3xl•/61 r l 1/6 
displays a 1/I r l 1/6 divergence. 

F. For x in the direction of a cusp caustic 

There are isolated points on a parabolic line where the 
direction of vanishing principal curvature is parallel to the 
parabolic line. These map onto cuspidal points on the wave 
surface where two fold edges meet, and onto cusp caustics 
in the energy flux. In the region between the folds the 
particular sheet of the wave surface comprises three co- 
joined layers and so there are three closely spaced wave 
arrivals, two carrying discontinuities and the third a loga- 
rithmic divergence. At the cuspidal point these all coalesce 
and give rise to a higher order singularity. Outside the 
folds there is a single sheet of the wave surface carrying 
with it a discontinuity or logarithmic divergence, which 
becomes very large as the cuspidal point is approached. 

In the region of the point So on the slowness surface 
which maps onto the cuspidal point, the equation of the 
slowness surface takes the form 
+ es24) +'" , where 5, •, and e are constants which can all 
be taken to be of the same sign. On the line passing through 
the local origin in the s• direction, the change in sign of the 
principal curvature in the s2 direction is effected by the 
second term. The third term restores the convexity (or 
concavity) for larger s2 and is associated with the curva- 
ture of the parabolic line. 

The singular behavior of G(x,T) is thus given by 

•(x,r) = --FA; ds 1 ds 2 •J( r q- [•S•l q- •$1•22 q- ff$24]x), 
(24) 
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which on substituting Sl =c[- 1/2x- 1/2u and $2 
= •[1/4•-- 1/2 x-- 1/4/3 becomes 

G(x,T) =•Z1/4•l/2x3/4 du dv t• T+u2+uv 2 
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FIG. 2. (a) (•33 and (b) G• for zinc in direction a along the high 
symmetry axis. x = 10 mm. 

FIG. 3. (a) (•33 and (b) (•22 for zinc in direction b. x=(2.0,0,10.0) in 
mm. 

On carrying out the integration we obtain 

... --FAg(sgn (•/),sgn (T)) 

G(x,T) =al/4•/2 ] •ll/4x3/4l TI 1/4, (26) 

where •/= 1/4-ea/• 2, g( +, + )=gL , ) =2.622, g(+, 
- ) = 3.708 and g( -, + ) =0. Thus G(x,T) exhibits a sin- 
gularity of the form 1/ITI 1/4 at the wave arrival, with a 
1/x 3/4 falloff with distance characteristic of the wave field 
at a cusp caustic. The singularity index is •=• in this case. 

Cusp caustics are often to be found on symmetry 
planes. The reason for this is simple. A parabolic line meets 
a symmetry plane at fight angles, unless that point of in- 
tersection happens to coincide with an acoustic axis. Since 
the direction of vanishing principal curvature there is ei- 
ther in or perpendicular to that plane, it must either be 
parallel or perpendicular to the parabolic line. In a sym- 
metry plane, for those components of_G(x,T) for which 
A=0, the singularity is softened with G being continuous 
but its time derivative 

aG(x,T) 
aT 

--Faal/4g2(sg n ( •l ) ,sgn (T)) 
•3/21,113/4x5/41 T I 3/4 

displaying a 1/I T I 3/4 divergence. 

(27) 
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G. Conical point in the wave surface 

Along the principal symmetry axis of a transversely 
isotropic solid (or hexagonal crystal) the wave surface pos- 
sesses a conical point when the elastic constants satisfy the 
inequality 33 

(C13--l--C44)2/[C13(C33--C44)] > 1. (28) 

Under these conditions the quasitransverse sheet of the 
slowness surface is concave near the symmetry axis. Con- 
centric with this axis are two circular parabolic lines where 
the surface first changes to saddle shaped and then to con- 
vex. The first of these lines maps onto a circular fold in the 
wave surface (see Fig. 1 ) and a line caustic in the energy 
flux. All points on the second parabolic line share a com- 
mon tangent plane and their surface normals are all paral- 
lel to the symmetry axis. This parabolic line maps onto a 
conical point in the wave surface where a single ray corre- 
sponds to a cone of slowness vectors. The associated caus- 
tic is thus highly degenerate, comprising the single point on 
the symmetry axis. Kim et al. 7 have observed the intense 
focusing associated with this caustic in zinc using a number 
of different ultrasonic techniques. The way this caustic un- 
folds into a pattern of fold and cusp caustics when the 
symmetry is lowered, has been described by Every. 33 The 
form of the singularity at this conical point in the wave 
surface is discussed in the book by Payton, TM and is 

G(x,T) • 
]/41rl, r<0, 
l/x, T>0. (29) 

F_rom symmetry, it is only the components (711 =(722 and 
(733 that are nonzero and display this singularity. The sin- 
gularity index a=« for T < 0 attests to the high order of 
this singularity. 13 Away from the symmetry axis there is a 
splitting into two wave arrivals, the earlier one carrying a 
logarithmic singularity and the later one a discontinuity. 

H. Conical point in the slowness surface 

At a point where two sheets of the slowness surface 
meet in the shape of a cone, the surface normal, and hence, 
the ray vector is undefined. Burridge 14 has analyzed the 
singular behavior associated with the conical point in cubic 
media (there are eight such equivalent points in the ( 111 ) 
directions) and has shown that it extends over a disk, or 
lid, which is tangential to the neighboring portions of the 
wave surface. On this lid the Green's function exhibits a 

discontinuity and so the response function G(x,T) exhibits 
a kink (change in slope). The magnitu_de of this kink de- 
pends on the particular component of Gsp(X,t) and scales 
as 1Ix 2, and this singularity is thus a near-field effect. The 
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FIG. 5. (a) ST+FT focusing pattern of diamond centered on the [001] 
direction, with darkness bein_.g the measu_re of intensity. Angular width 
from left to right is 17 ø. (b) G33 and (c) Gl] for diamond in the direction 
of the cube axis. x= 10 mm. tœ and t T denote the longitudinal and trans- 
verse wave arrivals, respectively. The inset in (c) shows the region of the 
T arrival on an expanded time scale. 

lid is circular and normal to the symmetry axis, and its 
circumference is the locus of rays associated with points on 
the slowness surface infinitesimally close to the conical 
point. Whatever the direction of the force, provided it has 
a component normal to the axis, it is the displacement 
component parallel to the lid which exhibits the singular 
behavior. This is because the modes in the vicinity of the 
conical point, from which the singularity is derived, are 
pure transverse. Barry and Musgrave 34 have extended 
Burridge's results to conical points in tetragonal media. 

I. Tangential degeneracies in the slowness.surface 

Tangential degeneracy between the two transverse 
sheets of the slowness surface exists in directions of four- 

fold and sixfold (transverse isotropy) symmetry. Near an 
axis of transverse isotropy the pure transverse sheet of the 
slowness surface is convex and the quasitransverse sheet 
may be convex or concave, depending on th_e elastic con- 
stant ratios. In either_case,_along the axis (]33 exhibits a 
kink singularity and (711 =(722 exhibit discontinuities. 

At _a fou_rfold axis, depending on the elastic constant 
ratios, (711=(72• exhibits either a discontinuity or a loga- 
rithmic type divergence, depending on the shape of the 
slowness surface in the region of the point of contact where 
the Gaussian curvature is not defined. We illustrate the 

possibilities by considering here the case of the [001] axis in 
cubic symmetry. Every 35 has described in detail the depen- 
dence of the shape of the slowness and wave surfaces of 
cubic media on the two elastic constant ratios Cll/C4• and 
C1•/C4•, and has established the thresholds A,B,C,... at 
which structural changes occur in these surfaces near the 
(100) directions. Starting from a small value of the anisot- 
ropy, both tLansverse sheets of the slowness surface are 
convex and (733 shows a kink and Gll =G22 show discon- 
tinuities. With increasing C1•/C44 the threshold ,4 is 
crossed at which wedges of saddle shape in the slow trans- 
verse (ST) sheet penetrate to the contact point. The direc- 
tion of negative principal curvature in the wedges is cir- 
cumferential with respect to the contact point, while the 
radial curvature, both inside and outside the wedges is 
l?.9siti•. As a consequence the singularity displayed by 
(711 = (722 remains a discontinuity which, however, becomes 
very large as threshold B is approached. Between the 
thresholds B and C, the radial curvature is negative in the 
[100] and [010] directions but still positive in the [1•10] a_nd 
[110] directions. In this elastic constant domain (711 =(722 
displays a logarithmic type divergence. Beyond the thresh- 
old C t•he radial curvature is negative in all directions and 
(711 =(722 displays again a discontinuity. The circumferen- 
tial curvature evidently plays no role in determining the 
nature of the singularity. 

III. NUMERICAL EXAMPLES 

A. Zinc 

Figure 1 shows the (010) section of the group velocity 
(ray) surface of zinc. As a hexagonal crystal, zinc con- 
forms to transverse acoustic isotropy, and the 3-D ray sur- 
face is generated by revolving this section about the [001] 
axis. The (010) and equivalent planes are mirror planes. 
The pure transverse (T) mode is polarized in the [010] 
direction, while the quasilongitudinal (qL) and quasitrans- 
verse (qT) modes are polarized in the (010) plane. The qT 
sheet has a circular fold encircling the [001] axis at an 
angle of 21.5 ø, which appears sectioned as the cusp (point 
10) in Fig. 1. There is also a circular fold very close to the 
(001 ) plane but that is not well resolved in the diagram. At 
point 3 on the qT sheet, the ray surface is conical in shape. 
Lines a, b, c, and d denote directions for which calculated 
response functions are presented below. 
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F_igure 2(a) and (b) show the response functions •33 
and G• for direction a along the symmetry axis. The wave 
arrivals denoted 1, 2, and 3 correspond to the similarly 
numbered points on the ray section in Fig. 1. For G33 there 
is a discontinuity at 1. It is fairly small because even 
though A = 1, the Gaussian curvature of the L sheet of the 
Slowness surface is fairly large in the region of the x3. axis. 
There is a kink at 2 (A=0) and a strong 1/('T) 1/2 di- 
vergence followed by a dis_continuity associated with the 
conical point 3. Regarding G•, there is a kink at 1 (A =.0), 
a small discontinuity at 2, and a 1/(--T) 1/2 divergence 
followed by a discontinuity at 3..,Because of the finite dis- 
cretized time interval used in the calculations, the discOn- 
tinu_ities appear as very rapid rather than sudden changes 
in G in these figures. • 

F_igure 3 (a) and (b) show t_he response functions G33 
and G22 in the direction b. F•)r G33 there is a discontinuity 
at 4 (A • 1 ), a change in SloPe and a barely visible discon- 
tinuity at 5 (Aw0), no singular feature at all is Present at 
6 (A=0 for all the T modes), there is a l_ogarithmic diver- 
gence at 7 and a discontinuity at 8. For G22 there is a kink 
at 4 (A=0), another kink at 5 (A=0), a discontinuity at 
6 (A = 1 ) with the pure T wave arrival, and kinks at 7 and 
8 (A=0). 

Figure 4(a), (b), and (c) show G.a 3, G22, and G• in 
the direction c of the fold. At point 9 G33 shows a discon- 
tinuity (A• 1 ), G• a small discontinuity ( I A I • 1 ) and 
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G22 a kink (A =0). At the cusp point 10, _G33 shows a weak 
1/I T[ 1/6 negative divergence ( I hl 41), sows a large 
1/I T I •/6 negative dive_rgence (A • 1 ), and G22 a vertical 
slope (divergence in c9_G/c9T) (A=O). At point 1 i with the 
pure T wave arrival_G33.shows no Singular features (A=0 
f_or all T modes), G22 shows a disconti•puity (A_= i ) and 
Gll shows a kink (A_=O). At point 12 6•33 and G•i display 
d_iscontinuities and G2i a kink (A =0). Figure 4(d) shows 
Gll for the direction d, which lies slightly beyond the cusp. 
It is very similar to Fig. 4(c), except that at point 13 there 
is a deep but nonsingular minimum (see Sec. IIE). 

B. Diamond 

Figure 5(a) shows a Monte Carlo calculated focusing 
pattern for the transverse modes of diamond in the vicinity 
of the [001] direction. It represents the distribution of ray 
vector directions corresponding to an isotropic distribution 
of slowness vectors. The resulting intensity is inversely pro- 
Portional to the Gaussian curvature .of the slowness sur- 
face. The elastic constant ratios of diamond place it in the 
domain between conditions A and B of Every. 35 The sl0w 
transverse (ST) mode displays caustics Which straddle the 
(110) and ( 1 ¾0) planes and converge on the acoustic axis 
in the [001] direction, where the transverse mode Slowness 
sheets make tangential c_ontact. F_igure 5 (b) and (c) show 
the response functions G33 and G• for this s•mmetry di- 
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rection. /•33 exhibits a discontinuity at the L wave arrival 
(A--1 ) and a kink at the arrival of the transverse waves 
(A-0). G• shows a kink at the L wave arrival (A--0) 
and a deep but finite minimum and discontinuity at the 
transverse wave arrivals. As condition B on the elastic 

constants is approached this minimum becomes progres- 
sively deeper and transforms into a logarithmic type diver- 
gence beyond the threshold B. 

C. Silicon 

Figure 6(a) shows the ST focusing pattern of silicon 
centered on the [001] direction and extending at the cor- 
ners to the (111) directions. Figure 6(b) shows the sym- 
metry plane (110) section of the slow (ST) and fast (FT) 
transverse sheet_s of the r_ay surface of silicon. Figure 6(c) 
and (d) show G• and/•33 for silicon in the region of the 
transverse wave arrivals for the direction denoted e in 6 (a) 
and 6(b), which coincides with a cusp in the ST sheet, and 
which passes through a circular lid in the wave surface 
associated with the conical point in the [111] direction. 
There are four wave arrivals denoted 1 (the lid), 2 (the ST 
cusp), 3 (associated with a saddle-shaped portion of ST 
sheet of slow_ness surface), and 4 (convex portion of ST 
sheet). For (•11 there is a kink at 1, a 17l TI 1/4 divergence 
at 2, _a logarithmic divergence at 3, and a discontinuity at 4. 
For (733 there is a kink at 1, a vertical slope at 2 (A=0), a 
logarithmic divergence at 3, and a discontinuity at 4. 

IV. COMPARISON WITH EXPERIMENT 

We compare here computed response functions for sil- 
icon and zinc with waveforms measured in silicon and zinc 

single crystals using the capillary fracture technique. 36 In 
this method the sharp edge of a razor blade is pressed 
down with steadily increasing force on a fine glass capillary 
lying on the surface of a sample. At the instant the capil- 
lary fractures there is an abrupt change in the normal force 
acting on the surface of the sample. The normal displace- 
ment at a point on the opposite surface in response to this 
change in force is measured using a small aperture capac- 
itive detector. We compare below the voltage signal from 
the capacitive detector, which is proportional to the nor- 
mal component of the displacement of the sensed surface, 
with the computed displacement response function for the 
infinite elastic continuum. The data pertains to early times 
prior to the arrival of reflected waves, and to directions not 
too far removed from epicenter so that head wave effects 
are not pronounced. Under these conditions the infinite 
continuum response functions are in overall good agree- 
ment with the measured waveforms, particularly with re- 
gard to the arrival times of the various singular features 
and their relative magnitudes. Naturally because of the 
small but finite rise time of the force ( •0.1/zs), the finite 
bandwidth of the signal processing circuitry and the small 
but finite sizes of the force and sensing areas, there is some 
rounding of the measured data as compared with the com- 
puted response functions. Taking the x3 axis to be the in- 
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FIG. 7. (a) Measured waveform and (b) corresponding calculated 
(733(X,t) for silicon. x= (6.0,0,49.15) in mm. 

ward normal at the sample's surface, it is the component 
(733(x,t) of the response function with which the compar- 
ison is made. 

Figure 7 (a) and (b) show the measured w_aveform 
and corresponding computed response function (733(x,t), 
respectively, for a (001) oriented silicon crystal of thick- 
ness 49.15 mm, with detection at a point located 6 mm 
from epicenter in the [100] direction. There is good agree- 
ment between the two with regard to all the prominent 
features, the discontinuity at the L wave arrival and the 
two sharp minima, shoulder and discontinuity at the T 
wave arrivals. We have carded out computer simulations 
in which the change in the force is treated not as instanta- 
neous but spread over a short time interval, and these give 
good account of the rounding of the singular features in the 
experimental waveform. The quasisingular feature is a 
deep minimum that arises from the fact that the sensing 
direction x lies slightly outside a fold in the ST sheet of•the 
wave surface. The second deep minimum, on expansion of 
the time scale, resolves into a closely spaced logarithmic 
divergence and large discontinuity. This feature is due to 
the sensing direction lying slightly inside of another fold in 
the ST sheet of the wave surface. A more extensive com- 

parison between theory and experiment on the dynamical 
response of Si will be presented elsewhere. 
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Figure 8(a) and (b) show the measured waveform 
and corresponding computed response function G33 (x,t), 
respectively, for a [0001] oriented zinc single crystal of 
thickness 25.8 mm, with detection at a point located 2 mm 
from epicenter. There is good agreement between the two 
with regard to all the main features, the discontinuity at 
the L wave arrival, the barely noticeable kink, which in 
practice looks smooth, at the first qT wave arrival, the 
logarithmic divergence at the second qT wave arrival and 
the discontinuity at the last qT wave arrival. There is no 
singular feature at all coinciding with the pure T wave 
arrival, for reasons discussed earlier. The slight dip in the 
measured waveform immediately preceding the last qT 
wave arrival is associated with a head wave. 37 Kim et al. 7 
have reported observation of the strong focusing associated 
with the 1/I T I 1/2 singularity on the symmetry axis of Zn. 

V. CONCLUSIONS 

The method described here for calculating the dy- 
namic response of an infinite elastic continuum to a con- 
centrated point force with Heaviside step function time 
dependence is simple and expedient. The relevant com- 
puter coding is easily implemented, and the CPU time re- 
quired in the calculations is modest. The programs are 

easily adapted to extended source and detector and finite 
rise time of the force, with the ensuing increase in com- 
puter time being negligible. 

A prominent feature of these response functions are 
the singularities (sharp features) they display at wave ar- 
rivals. This has been a principal focus of this paper, and we 
have identified a number of new singularity types. We have 
drawn attention to the influence that symmetry has on 
wave arrival singularities. Through a number of numerical 
examples we have illustrated the occurrence of these sin- 
gularities in the response functions of actual materials. 
These singularities survive in the response functions of 
elastic half-spaces, plates, and other bounded geometries, 
and are thus useful entities on which to anchor the inter- 

pretation of experimental data obtained on finite test spec- 
imens. 

Comparison has been made between computed re- 
sponse functions and waveforms measured in silicon and 
zinc crystals using the capillary fracture technique. For 
data pertaining to first arrivals, and in directions in which 
head wave effects are not pronounced, there is good agree- 
ment between theory and experiment, particularly with re- 
gard to the various singular features that are present. 
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