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2.1 Introduction

This chapter deals with a suite of techniques that elicit information on the
elastic properties of solids using pointlike excitation and detection of ultra-
sound. These point-source/point-receiver (PS/PR) techniques have shown great
promise in several materials’ inspection and characterization applications. One
of their advantages is that a point source generates both longitudinal and shear
waves in a specimen, and therefore information about both types of waves can,
in principle, be extracted from a single waveform. Furthermore, PS/PR signals
are simultaneously propagated in a wide range of directions in a specimen, and
so one can use an array of sensors or scan either the source or the receiver
over the specimen surface to determine the directional dependence of the
speeds of propagation and amplitudes of various wave modes in a material.
When a repetitive source is used, a number of signals measured at adjacent
source–receiver configurations can be stacked together to obtain a so-called
scan image, which portrays the detailed spatial and temporal characteristics of
the elastic wavefield in a material, and this can be directly related to the mate-
rial’s anisotropy and macrostructure [1]. Although PS/PR techniques offer the
advantage of simplicity in sample preparation and data collection, there is a
trade-off, and that is added complexity in extracting information about the
sample from the wavefield data.

The term PS/PR usually attaches to a technique that delivers acoustic energy
to a region comparable in size to, or smaller than, the characteristic wave-
length radiated, and to detection of the wavefield within a similarly small area.
Incoherent excitation over a larger region, as occurs in phonon imaging [2, 3],
can be categorized as PS/PR, provided that the coherence length is sufficiently
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small and the observation distance is much greater than the source size. An
essential characteristic of point excitation is that, instead of waves of a single
wave normal being excited, as is the case with conventional pulse-echo tech-
niques, the waveform is a superposition of waves with a broad spread of wave
normals. Radiation of acoustic energy consequently takes place in a wide range
of directions, and detection has similar wide-angle sensitivity. These techniques,
in essence, measure a time or frequency domain dynamic Green’s function
(response function) of the solid. As such, PS/PR techniques explore phenomena
that are not normally encountered in plane wave techniques. For an impulsive or
suddenly applied force, the response displays a number of wave arrival singu-
larities, which propagate outwards from the source at group velocity in each
direction. Periodic excitation reveals internal diffraction effects. In the far field,
the wave arrival rays and associated acoustic energy focusing dominate the
observations. Transient techniques can be considered simulated acoustic emis-
sion [4]; they produce similar waveforms to actual acoustic emission or seismic
events, but in a more controlled way.

There are a number of techniques available for performing PS/PR measure-
ments. The fracture of a very small capillary [5, 6] or pencil lead [7] on the
surface of a sample simulates a point force acting normal to the surface and
having a step function time dependence. A focused pulsed laser beam of suffi-
cient energy to cause ablation of a specimen’s surface simulates a point impulse
normal to that surface, and a horizontal double force is realized when the pulsed
laser beam operates in the thermoelastic regime [8–10]. Much the same effect
can be achieved with electron beams [11] and x-rays [12]. Pointlike detection
can be achieved, for example, with piezoelectric “pinducers,” with small capac-
itive detectors [6], or by laser interferometry [13–15]. Focusing an acoustic
beam through a transmission fluid onto a surface allows pulsed or periodic forces
to be generated and surface displacements to be detected [16–20]. Optical tech-
niques for excitation and detection have the advantage of being noncontact.
Discussion of the comparative operational characteristics of a number of sources
and receivers that can be used in PS/PR measurements can be found in [21].

To date, ultrasonic PS/PR measurements of elastic constants have been
carried out on a number of crystals (see, e.g., [22–31]) and also on a variety of
polymer and ceramic–ceramic matrix composite specimens (see, e.g., [32–35]).
In the case of composites, signals possessing excellent signal-to-noise ratio are
detected even when the materials exhibit high damping characteristics that make
conventional ultrasonic measurements difficult or even impossible.

2.2 Dynamic Green’s Functions: Formal Solutions

The phenomena we describe in this chapter, as mentioned earlier, can be
interpreted directly or indirectly in terms of dynamic Green’s functions. Some
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of these phenomena are reasonably well accounted for by the Green’s functions
for an infinite anisotropic elastic continuum [36–38], whereas for others the
surfaces play a vital role. Where necessary we will be treating the effects of
surfaces either in an ad hoc matter, or invoke the dynamic Green’s function
for a half-space [39–42] in the interpretation. Our concluding discussion is
on transient waves in thin anisotropic plates.

2.2.1 Infinite Continuum Green’s Functions

The space-time response or Green’s function Gij (x, t) for an infinite aniso-
tropic elastic continuum is governed by the equation

(

ρδmi

∂2

∂t2
− cmkiℓ

∂2

∂xk∂xℓ

)

Gij (x, t) = δmjδ(x)F (t) (2.1)

Physically Gij (x, t) represents the i’th Cartesian component of the displace-
ment at point x and time t in response to a concentrated force in the j ’th
direction having time dependence F(t), applied at the origin. The array of
responses Gij (x, t), i, j = 1, 2, 3, form a tensor of second rank. The formal
solution to Eq. 2.1 in terms of integral transforms has been treated by a
number of authors [36–38, 43–47], and the methods have been reviewed by
Payton [48]. In brief, by carrying out a quadruple space-time Fourier trans-
form on Eq. 2.1, solving the resultant algebraic equations, and then carrying
out the inverse transform, one obtains

Gij (x, t) =
∫

Gij (x, ω)f (ω)e−iωt dω (2.2)

where

Gij (x, ω) = 1

(2π)3

∫

d3k(L−1(k, ω))ij e
ik.x (2.3)

Lmi(k, ω) = cmkiℓkkkℓ − ρω2δmi (2.4)

and

f (ω) = 1

2π

∫

F(t) eiωt dt (2.5)

is the Fourier transform of the forcing function. Using the spectral resolution
theorem [49], we can write

(L−1)ij =
3
∑

n=1

�
(n)
ij

ρv(n)2k2 − ρω2
=

3
∑

n=1

s(n)2�
(n)
ij

ρ(k2 − ω2s(n)2)
(2.6)
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where the sum is taken over the three eigensolutions of the Christoffel tensor
Ŵmi = cmkiℓnknℓ, and v(n) is the phase velocity, s(n) = 1/v(n) the slowness,

�
(n)
ij = U

(n)
i U

(n)
j , and U(n) is the polarization vector for each mode. The inte-

gral over the magnitude of k can be done analytically [36, 37], leading to the
equation

Gij (x, ω) = 1

8π2ρ

∑

n

{

iω

∫

∩
d�s(n)3�

(n)
ij eiωs(n).x + 1

x

∫ 2π

0

dφs(n)2�
(n)
ij

}

(2.7)
for the frequency domain Green’s function Gij (x, ω). The first of the two
integrals is with respect to the direction of the slowness s = k/ω, and is
carried out over the unit hemisphere centered on the observation direction,
with d� denoting the element of solid angle in which s falls. The second
integral is a line integral taken around the periphery of this hemisphere.

We evaluate Gij (x, t) for a point force with step function time dependence

F(t) = �(t) =
{

0, t < 0
1, t > 0

(2.8)

The Fourier transform of �(t) is f (ω) = −1/2πiω + δ(ω)/2, and from Eq. 2.2
it follows that

Gij (x, t)=
1

8π2ρ

∑

n

{

−
∫

∩
d�s(n)3�

(n)
ij δ(t−s.x)+�(t)

x

∫ 2π

0

dφs(n)2�
(n)
ij

}

.

(2.9)
The response to an impulsive force F(t) = δ(t) is the time derivative of
Gij (x, t), and the response to other force distributions and time dependences
can be obtained by integration.

2.2.2 Half-space Green’s Functions

We take the Fourier domain surface Green’s function for an anisotropic
solid as our starting point for calculating the transient response of a half-
space, following the method of Every et al. [39]. Generalizing to an arbitrary
component of surface force, and to the response at an interior point of an
anisotropic elastic half-space (hs) at a distance x3 from the surface, we have

Ghs
ij (k||, x3, ω) = i

ω

3
∑

n=1

E
(n)
ij exp{ik(n)3 x3} (2.10)

E
(n)
ij (s||) =

adj(B)
(n)
j U

(n)
i

det |B| (2.11)
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and s|| = k||/ω. By Fourier transforming with respect to k|| and ω, and replacing
the integration variable k|| by s||, we arrive at the following integral expression:

Ghs
ij (x, t) = − 1

4π3

∫ ∞

−∞
d2s||

∫ ∞

0

dω

3
∑

n=1

E
(n)
ij exp{iω(s||.x|| + s

(n)
3 x3 − t)} + I

(2.12)
for the response of the medium to a concentrated point force acting on the
surface and having step function time dependence �(t). I is an integration
constant. Without loss of generality, we can choose the observation point to
be in the (x1, x3) plane, setting x2 = 0. The integration over ω can be done
analytically to yield

Ghs
ij (x, t) = − 1

4π3|x| Re

∫ ∞

−∞
d2s||

3
∑

n=1

iE
(n)
ij (s||)

s1 sin θ + s
(n)
3 cos θ − t/|x| + i0+

+ I

(2.13)
For the surface response (x3 = 0) we can use causality to simplify further,
finally obtaining

Ghs
ij (x1, t > 0) = − 1

2π2|x1|
Re{�ij (t/x1) − �ij (0)} (2.14)

where

�ij (s1) =
∫ ∞

−∞
ds2

3
∑

n=1

E
(n)
ij (s1, s2) (2.15)

Calculated responses are presented later.

2.3 Response to a Periodic Force: Numerical Implementation and

Comparison with Experiment

For an isotropic solid the angular integrals in Eq. 2.7 for the infinite
continuum response function Gij (x, ω) can be performed analytically [4], but
for anisotropic solids, except in certain special cases [48], these integrals
require numerical methods for their evaluation. The first term in Eq. 2.7,
because it involves 2D integration, is the most computationally demanding.
The main reason for this is the rapid variation of the phase factor, which
necessitates a fine grid size for the integration. Of interest to us here is the far
field ωsx > 200π and the intermediate field 200π > ωsx > 2π .

2.3.1 The Far Field

For the far field we invoke the stationary phase approximation and limit
the integration to small regions around directions in which the phase ωs.x is
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stationary. The contribution from all other directions is negligible because of
the rapid phase variation of the integrand and resulting cancellation. At the
stationary phase points, the outward normal to the slowness surface, which is
the direction of the group velocity V is parallel to the observation direction x.
Thus, to obtain the response at a point requires identifying the group velocities
in that direction.

There are various methods for calculating the group velocity V = ∇kω(k)

for a wave, all of which involve expressing it parametrically in terms of
quantities that are derivable from Christoffel’s equation. The more frequently
encountered are the following [50–52]. Differentiating Christoffel’s equation
yields

Vi = 1

ρv
cijklnkUjUl (2.16)

V can also be obtained from the phase velocity equation by implicit differen-
tiation. Arranging this equation to be homogeneous in the components of n,
one has

V = ∂v

∂n
2.17)

The fact that the group velocity is normal to the constant frequency and
slowness surfaces leads to two other expressions for V:

V = −∇kD(k, ω)

∂D/∂ω
= ∇sS(s)

s · ∇sS(s)
(2.18)

where the dispersion relation D(k, ω) = 0 and the slowness equation S(s) = 0.
In these small regions around the stationary phase points, the factor s3� can

be taken to be constant, and for a generic point the equation for the slowness
surface can be approximated by s3 = L1s

2
1 + L2s

2
2 in a locally oriented coor-

dinate system with s3 normal to the surface and s1 and s2 along the directions
of the principal curvatures of the surface. L1 and L2 are the values of these
principal curvatures, and their product, K = L1L2, is the Gaussian curvature
of the surface. The integral can now be performed analytically, yielding a
contribution to Gij (x, ω) of the form [37, 44]

G ≈ s�eiωs.x

ρx
√|L1L2|

(2.19)

for each stationary phase point. The intensity or energy flux I associated with
each contribution is proportional to |G|2, and thus

I ≈ 1

x|K| (2.20)
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We will see that this result has a simple geometrical interpretation on the basis
of ray acoustics, and that the variation of K in an anisotropic solid can have
striking consequences.

2.3.2 Phonon Imaging

The acoustic anisotropy of crystals is revealed in a most graphic way in
phonon imaging [2]. In this technique a focused laser or electron beam is used
to heat a small spot on the surface of a single crystal specimen maintained at
an ambient temperature of ≈2K. The thermal phonons emanating from this
heated region (they can be thought of as small wave packets with frequen-
cies in the region of 100 GHz) travel ballistically through the crystal to the
opposite face, where they are detected with a superconducting bolometer or
tunnel junction detector. A phonon image depicts the directional dependence
of the transmitted phonon intensity and is constructed by raster-scanning the
source over the front surface and recording the detected signal as a gray-
scale image. Figure 2.1(a) shows a measured phonon image for the crystal
sapphire (Al2O3) [53], time-gated to display only the ST and FT phonon flux.
The phonon intensity is highly nonuniform, mainly ascribable to the effect of
phonon focusing discussed in the following text. The bright lines are caustics,
where the flux is mathematically singular.

Phonon focusing has its origin in the nonspherical shape of the acoustic
slowness surface. The rays pointing out of this surface can be taken to repre-
sent the group velocity vectors of the phonons making up the heat flux. It is
evident that, where the curvature of the slowness surface is least, the group
velocity vectors are strongly concentrated in direction, and consequently the
energy flux in that direction is the greatest. This effect is known as phonon
focusing, and it is the most important source of nonuniformity of the intensity
in phonon images. A useful measure of focusing is given by the Maris phonon
enhancement factor [3, 54]

A =
∣

∣

∣

∣

δ�s

δ�V

∣

∣

∣

∣

(2.21)

where δ�s is the solid angle subtended by an infinitesimal cone of slowness
vectors and δ�V is the solid angle subtended by their associated group velocity
vectors. From differential geometry it is readily established that [55, 56]

A = (s3V |K|)−1 (2.22)

This geometrical argument thus leads to the same conclusion as the stationary
phase approximation for the far field, namely, that the energy flux in any
direction for a particular mode is inversely proportional to the magnitude of
the Gaussian curvature, |K|, of the slowness surface.



44 POINT-SOURCE/POINT-RECEIVER METHODS

(a)

(b)

FIG. 2.1. (a) Measured phonon image for the crystal sapphire (Al2O3), time-gated to
display only the ST and FT phonon flux. Bright regions indicate directions of high
phonon intensity. (b) Monte Carlo calculated focusing pattern for sapphire (darkness
in this case is a measure of the phonon intensity).

Monte Carlo methods provide the simplest means of generating theoretical
phonon intensity patterns of crystals [2]. A common point of departure in these
computer simulations is to assume that the phonons emanating from the heat
source have a uniform distribution of wave normals. The group velocities for
a large number of uniformly distributed normals are computed, and the points
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where these meet the viewing surface are sorted into a two-dimensional array
of bins, and the result presented as a gray-scale image. Figure 2.1(b) shows
the calculated focusing pattern for sapphire for the experimental geometry of
Figure 2.1(a). The values of the elastic constants in this calculation have been
adjusted to obtain the best fit to experiment. Actually, it is only the elastic
constant ratios that can be determined in this way, since changing all the
elastic constants by the same factor does not alter a phonon focusing pattern.
The values of the elastic constants obtained are close to the low-temperature
extrapolated values used in [53]. Interestingly, the fit is most sensitive to the
value of C14, an elastic constant that is not normally easy to measure accurately
(the fitted value is −23.2 ± 0.3 GPa). Metzger and Huebener [57] have made
similar adjustments to the values of the elastic constants in fitting calculated to
measured phonon image of germanium. Their fitted values differ appreciably
from literature values, and they conclude that this is the result of dispersion.

The most striking feature of the phonon images in Figure 2.1 is the complex
pattern of caustics they contain. These intense bands are associated with lines
of zero Gaussian curvature on the slowness surface [55]. The vanishing of K

on these lines results in the energy flux being mathematically infinite. Caustics
are essentially a far-field effect. The patterns they form for different crystal
symmetries and degrees of anisotropy have been extensively studied by a
number of authors. For a review, see [2].

2.3.3 Intermediate Field

Emerging from the far field, as the frequency is lowered or the observation
point is brought closer to the source, each line caustic of a phonon focusing
pattern unfolds into an Airy diffraction pattern [58, 59]. As the frequency is
lowered further, the fringes broaden and merge, becoming fewer in number.
To predict the diffraction pattern requires going beyond the stationary phase
approximation and carrying out the numerical integration in Eq. 2.7. In the
intermediate field the main contributions to the integral still come from the
vicinity of stationary phase points, and one can, without much loss of accuracy,
still restrict the integration to small but finite regions around each such point.

2.3.4 Scanning Transmission Acoustic Microscopy

Scanning transmission acoustic microscopy has been used by Hauser
et al. [18] to study the frequency domain dynamic response of a number of
anisotropic solids, including metal, insulating and semiconducting crystals, and
fiber composites. Their experimental setup is shown in Figure 2.2(a). A pair of
water immersion acoustic lenses, which are focused to small spots on opposite
surfaces of the sample, are used to generate and detect ultrasonic tone bursts
with central frequencies in the range of 5 to 25 MHz. One of the transducers
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Source Sample

Detector

Scan

H2O

(a)

(b)

(c)

FIG. 2.2. (a) Experimental scanning transmission acoustic microscopy technique of
Hauser et al. [18]. (b) Internal diffraction image of GaAs centered on the [100] direc-
tion, measured by Wuerz et al. [27, 28], (c) Their calculated image, based on optimized
values of the elastic constants.
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TABLE 2.1. Elastic Constants of GaAs

C11(GPa) C12(GPa) C44(GPa)

Wuerz et al. [27] 118.52 54.99 57.77
Tabulated values [60] 118 53.5 59.4

is kept fixed while the other is raster-scanned to yield a two-dimensional
image of the ultrasonic flux pattern transmitted through the sample. The
measured diffraction images are in good agreement with calculated Green’s
functions G33(x, ω) corresponding to the experimental parameters. The actual
analysis carried out by Hauser et al. [18] is a little different from this, in
that they also take account of the finite angular width of the incoming and
outgoing beams in the water and of the angular dependence of the transmission
across the fluid–solid interface. Wesner et al. [19] have used essentially the
same technique to study a number of crystals, except that they retain phase
information and operate at higher frequencies. Kim et al. [36] have studied
the diffraction of SH waves in Si using piezoelectric shear transducers.

2.3.4.1 Recovery of Elastic Constants from Diffraction Images. Wuerz
et al. [27, 28] have determined the elastic constants of GaAs by fitting a
calculated diffraction image to measurement for that crystal. Figure 2.2(b)
shows their measured image. They have used a simplex inversion algorithm
to obtain the elastic constants, starting from remote values. Figure 2.2(c) is the
best fit to their early time image, and the Table 2.1 shows the elastic constant
values they obtain from this fit, which are in close agreement with tabulated
values. In contrast to phonon imaging, all the elastic constants are obtained
from a diffraction image, not simply the ratios. This is because the magnitudes
of the elastic constants determine the fringe spacing. Interestingly, in their fit
Wuerz et al. [27] use only information pertaining to the ST branch extending
out to about 13° from the [100] direction, and yet are able to accurately recover
all three of the elastic constants of GaAs. It is unlikely that one would be able
to achieve the same accuracy with ST phase velocity measurements in the
same angular range. The algorithm of Wuerz et al. [27] appears to be quite
robust, although CPU intensive.

2.4 Time Domain Response: Numerical Implementation and

Comparison with Experiment

2.4.1 Infinite Continuum Response

To evaluate Gij (x, t) at a particular time, the first term in Eq. 2.9 can
be reduced to a one-dimensional integral summed over directions for which
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t − s.x = 0. However, it is usual that the entire time dependence of Gij (x, t)

is required, in which case it is simpler, and not necessarily more demanding
on computer time, to perform the two-dimensional integration as a sorting and
counting process. The time interval between t = 0 and the arrival of the last
wave, i.e., the largest value of s.x, is divided into a number of slots. A uniform
distribution of n’s is generated, and for each of these the value of s.x deter-
mines the slot in which the corresponding value of s3�ij is accumulated. For
times exceeding the maximum of s.x, Gij (x, t) has the constant value given
by the second term in Eq. 2.9. By way of example, Figure 2.3(a) shows calcu-
lated infinite continuum responses G33(x, t) for hexagonal zinc (x3 axis taken
along the principal crystallographic axis) [39] for three observation points,
namely, x1 = 0 mm, 5 mm, and 10 mm, with x2 = 0 and x3 = 25.8 mm.

Some of the striking features of these and other space-time Green’s func-
tions are the singularities they contain. These are called wave arrivals and are
associated with points on the slowness surface where s.x is stationary. These
wave arrival singularities propagate outwards from the source at the group
velocities in each direction, and thus lie on the wave surface, i.e., the locus of
ray vectors scaled by a factor t . Figure 2.4 shows the zonal section of the L
and qT sheets of the wave surface of zinc [37] (the pure T sheet is not shown
since these T waves are SH polarized and are not coupled to in G33). The qT
sheet is folded, giving rise to multiple wave arrivals near the [001] direction.

The analytical form of a wave arrival singularity is ascertained by approxi-
mating the equation of the slowness surface with a polynomial function in the
region around the stationary phase point, and then integrating analytically [37,
48]. What emerges is that, for convex and concave regions of the slowness
surface (L1, L2 both negative or both positive), Gij (x, t) displays a disconti-

nuity of magnitude proportional to �/x
√|K|, together with a change in slope.

The arrivals L and S are of this form, with the response being zero before the
longitudinal arrival L and constant after the last shear arrival S. For saddle-
shaped regions of the slowness surface (L1, L2 opposite in sign), Gij (x, t)

displays a logarithmic divergence, an example of which is the arrival I. Along
the zonal axis of transversely isotropic solids such as zinc, for which the slow-
ness surface is concave in the region of the zonal axis, there is a conical point
in the ray surface, and this gives rise to the negative square root singularity
of the arrival X, which is associated with the phenomenon of external conical
refraction [61]. These wave arrivals correspond to intersections of the viewing
direction with sheets of the wave surface of zinc as shown in Figure 2.4.

2.4.2 Half-Space Response

The sorts of experiments that measure the response functions of solids,
more often than not, involve forces being applied and measurements being
carried out at surfaces. One might expect, therefore, that half-space Green’s
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FIG. 2.3. (a) Calculated infinite continuum response function G33(x, t) for hexagonal
zinc, for three observation points x1 = 0 mm, 5 mm, and 10 mm, with x2 = 0 and
x3 = 25.8 mm. (b) Corresponding half-space Green’s functions Ghs

33(x, t). The elastic
constants are from [60].

functions or the Green’s functions for a layer would more accurately model
the results of these experiments. Calculation of the half-space Green’s func-
tion for an interior point requires evaluation of the two-dimensional integral
in Eq. 2.13. In the case of a generally anisotropic solid, this can be done
entirely numerically [39] or, using the Cagniard-de Hoop method, to evaluate
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FIG. 2.4. Zonal section of the L and qT sheets of the wave surface of zinc.

one of the integrals analytically [40, 41]. The results obtained by the two
approaches are identical. Figure 2.3(b) shows the calculated zinc half-space
response functions Ghs

ss (x, t) for the same configurations as in Figure 2.3(a).
Overall, the displacements are greater in magnitude by about a factor of 2 as
compared with those for the infinite continuum, as one might expect. The bulk
wave arrivals have the same analytic form and occur at the same times as for
the half-space calculation, and for early times and near epicentral directions,
the two response functions are almost indistinguishable. After the last T wave
arrival, while the infinite continuum response G33(x, t) is constant, the half-
space response Ghs

33(x, t) approaches asymptotically a constant value. This
last-mentioned feature is a diffraction effect originating at the surface.

For observation points well away from epicenter, where the surfaces of the
sample play an increasingly important role, the two responses are no longer
so similar. For the half-space an additional wavefront appears, called the head
wave [62]. This is the sharp downward kink marked H in Figure 2.3(b) and
the wave surface similarly labeled in Figure 2.4. A head wave can be thought
of as being made up of a family of slower (transverse) waves trailing the
faster (longitudinal) wave as it skims along the surface, much like in the
formation of a supersonic cone. Zinc is somewhat unusual in that the head
wave merges with the qT sheet of the wave surface at a point very close to
the conical point [62]. These calculated responses are in very good agreement
with waveforms measured in zinc by Kim et al. [63, 64], particularly with
regard to the bulk and head wave arrivals.

Along the surface of the solid there is also the Rayleigh wavefront, which
lags behind the slowest T wavefront, and which along the surface propagates
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the dominant singularity. This is discussed in Section 2.5. For a thick plate,
there are also numerous multipass wave arrivals, encompassing the various
possible mode conversion sequences. The generalized ray approximation [47,
65] is a starting point for calculations of the complete waveform for a thick
plate of arbitrary anisotropy, but to date there has not been much in the way of
numerical implementation of this method for modeling experiment. The main
difficulty is keeping track of the large number of poles that occur. In the case
of viscoelastic solids, these poles lie off the real axis, and numerical integra-
tion becomes a viable option for computing the response of an anisotropic
plate [35, 66]. The complex issue of poles is sidestepped in finite difference
calculations (see, e.g., [67]).

2.4.3 Inversion of Capillary Fracture Waveform Data

A method of simulating a concentrated normal force on the surface of a
sample with a step function time dependence is to place a thin glass capillary
on the surface and press the sharp edge of a razor blade down on it until it
breaks [5, 6]. At this instant the approximate point load on the surface drops
abruptly to zero. The waveform that is generated is of large amplitude and
can be accurately monitored with a small-aperture capacitive transducer placed
elsewhere on the surface of the sample. This method has been applied to a
variety of solids.

A complete waveform contains a great deal of information that can be used to
recover elastic constants. Every and Kim [23] have determined elastic constants
of silicon from individual capillary fracture-generated waveforms obtained on
a (001)-oriented Si single crystal, confining their attention to near epicentral
measurements and data extending only as far as the last T wave arrival, and
interpreting this information on the basis of the infinite continuum Green’s
function, which is adequate in this region, where the HW does not exist.

Figure 2.5 shows a measured epicentral waveform for silicon and the out-
come of a simple optimization process based on a succession of grid searches
in which the elastic constants C12 and C44 have been determined by fitting
the calculated infinite continuum Green’s function to the measured waveform.
The fit is close, and the values of C12 and C44 obtained are in good agreement
with accepted values, 63GPa and 79.1GPa, respectively [60]. The position of
the dip followed by the steep rise is most sensitive to the value of C44, and the
depth of the dip is mainly controlled by C12. Interestingly, from phase velocity
measurements in the (001) direction of a cubic crystal, it is not possible to
obtain the value of C12.

2.4.4 Observation of Wave Arrivals

In some experiments, it is only the singularities in a waveform, where most
of the acoustic energy is concentrated, that can be clearly distinguished, the
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remaining features being obscured by transducer ringing and other experimental
artifacts. This is particularly true of laser ultrasound measurements [8–10]. A
number of groups have consequently devoted their efforts to measuring wave
arrivals, reconstructing part of the wave surface, and then working backwards
to determine the elastic constants.

2.4.4.1 Laser Ultrasound Measurements. In recent years laser ultra-
sound measurements have been carried out on a number of anisotropic solids,
including silicon and zinc single crystals and a variety of fiber compos-
ites [1, 68] (for a review, see Castagnede and Berthelot [69]). In the standard
approach, as depicted in Figure 2.6(a), a focused Q-switched laser delivers a
heat pulse to a small region on the surface of a specimen, causing a transient
acoustic wave to be launched into the specimen. The wavefield is measured
on the opposite face using interferometry or a small-aperture piezoelectric or
capacitive transducer, which senses the normal displacement of the surface.
Note that it is the thermally generated sound wave that is detected, not the
thermal phonons making up the heat pulse as in phonon imaging. At low
power densities the thermoacoustic generation mechanism predominates. The
sudden rise in temperature of the surface brings about a localized radial
stress field within the surface, and this results in acoustic radiation. At higher
power densities, material is ablated from the surface, and this gives rise to an
impulsive reaction force normal to the surface. The generation and detection
processes are both axisymmetric in form, and only waves with a significant
sagittal component to their polarizations feature in the observations.

Figure 2.6(b) shows typical waveforms obtained by Every et al. [1] on a
10-mm-thick (001)-oriented silicon single crystal with detection at epicenter
and at 8 mm from epicenter. Although the wave arrivals are recognizable
from the signal onsets, little information can be inferred directly from these
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signals concerning the continuous portions of the waveforms in between the
singularities.

Figure 2.7(a) shows a scan image obtained by stacking together a large
number of waveforms for a closely spaced set of excitation points, and repre-
senting the resulting (x, t) response as a gray-scale image [1]. Figure 2.7(b)
shows the theoretical wave arrivals obtained by a Monte Carlo procedure
that assumes a uniform distribution of wave normals n, and then plots as
points the arrival times of those rays that come within the detector aperture
for each value of x. The calculated scan image features the first L and ST
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a closely spaced set of excitation points in the [100] direction. (b) Calculated scan
image.

wave arrivals, the head wave (HW), and the arrivals of various mode conver-
sion sequences for passage of the wavefield three and five times through the
sample. The multipass and head waves are calculated using standard proce-
dures for dealing with reflection in anisotropic solids [52]. These various wave
arrivals are all in good agreement with the signal onsets in the measured scan
image. There is no discernable presence of FT single- or multipass waves,
or any mode conversion sequence or head wave involving FT waves. This is
because the FT waves are almost perfectly shear-horizontally (SH) polarized,



TIME DOMAIN RESPONSE 55

and are therefore uncoupled from the axisymmetric mode of excitation and
detection. The single- and multipass wave arrivals and head wave are all in
good agreement with experiment. Castagnede et al. [70] have carried out a
similar study on fiber composites using the Cagniard-de Hoop method to do
the simulations.

In viscoelastic solids there is rounding of the wave arrivals due to dis-
persion. Guilbaud and Audoin [35] have used wavelet analysis to process
waveforms measured on polymer matrix composites, thereby obtaining more
accurate (frequency-dependent) wave arrival times. Another device for obtain-
ing more accurate wave arrivals, used by Audoin et al. [71], is to locate peaks
in the radiation power, calculated from the measured signal and its Hilbert
transform.

2.4.5 Inversion to Obtain Elastic Constants from Group Velocity Data

The inverse problem of obtaining elastic constants from group velocity data
is, in general, more complicated than for phase velocity data. The main reason
is that, in cubic or lower-symmetry materials, the group velocity for a particular
nonsymmetry direction cannot be obtained by analytic means; it needs to be
computed numerically. One method of doing so is to choose a starting value
of the wave normal n, calculate the phase velocity v(n) by diagonalizing the
Christoffel tensor, obtain the group velocity V by one of the methods described
in Section 2.3.1, and then adjust n until V points in the required direction.
Building on this procedure, Every and Sachse [24] have implemented the
following double iterative strategy for recovering elastic constants Cαβ from a
set of measured group velocities. With a starting set of Cαβ ’s, V’s having the
directions but not in general the magnitudes of the measured V’s are obtained.
A succession of steadily improving values of the Cαβ ’s are then generated,
which at each step reduce the mean square difference between the measured
and calculated V’s.

Table 2.2 shows the elastic constants of Si that Every and Sachse [24] have
obtained from laser ultrasound measurements. They are in good agreement
with tabulated values. This algorithm has been used on a number of mate-
rials, including composites with different ply-layup configurations [72, 32].
Figure 2.8 shows group velocity data measured in a cross-ply graphite–epoxy

TABLE 2.2. Elastic Constants of Si

C11(GPa) C12(GPa) C44(GPa)

Every and Sachse [24] 165.1 65.0 80.2
Tabulated values [60] 165 63 79.1
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specimen by Lin Niu [72], using capillary fracture generation and capacitive
detection, together with her fitted group velocity curve. Her recovered values of
the elastic constants are C11 = C22 = 185, C33 = 12.0, C44 = C55 = 4.14, and
C13 = C23 = 3.96 GPa. A number of other authors have subsequently imple-
mented similar schemes. Minachi et al. [73] have determined elastic constants
of a number of unidirectional graphite–epoxy composite plates from the group
velocities of longitudinal pulses that are generated at one surface of the sample,
reflected from the opposite surface, and then detected elsewhere at the first
surface using piezoelectric transducers. Their material is transversely isotropic,
which simplifies the calculations a bit since the plane in which the wave normal
lies is known.

In directions where the wave surface is folded, the algorithm described
previously for determining the wave normals can become unstable because of
the multiplicity of wave arrivals in these directions. An alternative approach,
based on the Cagniard-de Hoop method, has been developed by Deschamps
and Bescond [74], and is claimed to be more robust. It has been implemented
on laser-generated data to obtain the elastic constants of silicon [71]. A pitfall
that has to be carefully negotiated when using data from near cuspidal edges of
the wave surface is that a sharp feature persists in the waveform well beyond
the cuspidal edge [20, 37, 71], and it is difficult to distinguish this from an
actual wave arrival.

In laser ultrasound, the first L arrival tends to be the clearest and most
accurately measurable, with later arrivals being partially obscured by their
proximity and by noise. Although it is tempting, therefore, to try to base an
elastic constant determination on L data alone, Every and Sachse [75] and



TIME DOMAIN RESPONSE 57

Castagnede et al. [76] have shown that longitudinal velocities depend most

sensitively on the partial set of elastic constants C11, C22, C33, (C12 + 2C66),

(C23 + 2C44), and (C13 + 2C55), and it is only these constants that can be

accurately recovered from longitudinal velocity data.

2.4.5.1 Symmetry Plane Measurements. For minimization of exper-

imental error, it is recommended and indeed is quite a common practice in

crystallography to determine the elastic constants from wave speeds measured

in symmetry planes that contain symmetry axes. For media of orthorhombic

or higher symmetry, the diagonal elements Cαα, α = 1, 2, . . . 6 are determined

from measured speeds of longitudinal and transverse waves propagating in

symmetry directions, since variations of these wave speeds with deviation

of their wave normals from the symmetry direction are zero to first order.

Along the principal axes, group and phase velocities coincide and the elastic

constant Cαα is given simply by ρv2 for the relevant velocity. Determination

of the mixed-index elastic constants Cαβ , α �= β, is carried out using measure-

ments of the group velocities of quasi-longitudinal and quasi-transverse modes

propagating along oblique directions in symmetry planes, for which direc-

tions of corresponding wave normals are found from an analytic equation

expressed in terms of elastic constants that include both pure- and mixed-index

elastic constants. The mixed-index elastic constants are then calculated from a

closed-form analytic formula that relates them to the magnitude of the group

velocity, its direction and corresponding wave normal. It is also noted that

pure-index shear moduli, such as C44, C55, and C66, can also be determined

from measurements of group velocities of a shear-horizontally (SH) polar-

ized pure transverse mode propagating along oblique directions in symmetry

planes. Kim et al. [29–31] developed this procedure and determined the elastic

constants of cubic silicon, hexagonal zinc, and an orthorhombic PEEK (poly

ether ether ketone) composite from group velocities measured in symmetry

planes of these materials.

For data pertaining to certain high-symmetry directions such as fourfold

axes in cubic and tetragonal media, the sixfold axis in hexagonal media,

and twofold axes in orthorhombic media, around which a transverse slow-

ness sheet is concave-shaped, it is possible to derive closed-form expressions

relating the group velocities to the Cαβ ’s, not only for the modes whose n’s

lie in the symmetry direction, but also for the so-called oblique modes whose

n’s lie away from the axis in symmetry planes. These expressions allow the

Cαβ ’s to be obtained by analytic means [77, 78]. Litian Wang [79] has carried

out a general analysis of this problem using Stroh’s formalism. The inversion

is simplest for wave arrivals whose normals lie in the symmetry directions,

because in that case phase and group velocities coincide. Kim et al. [80] have

obtained elastic constants of Si from multipass arrivals by this means. Aussel
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and Monchalin [22], who were pioneers in the use of laser-generated ultra-
sound for elastic constant determination, also focused on measurements in
symmetry directions.

2.5 Surface Response

When detection is carried out on the same surface as excitation, the response is
dominated by Rayleigh surface acoustic waves (SAW) or pseudo-SAW (pSAW).
The feature labeled RW represents the slowness curve of the SAW in the (001)
surface of copper. It is the slowest propagating wave arrival and hence appears
latest in the surface displacement signal. The family of SAW rays emanating
from the point of excitation is normal to this curve. There are two regions
in that diagram where the slowness curve is concave, whereas elsewhere it is
convex. As a result, the SAW group velocity curve is folded in a complicated
way near the 〈100〉 directions as shown in the inset in Figure 2.9(a), and the
surface response to point excitation exhibits multiple SAW arrivals, as seen for
the calculated response for the [100] direction, represented by the solid curve
in Figure 2.9(a) [81]. The cuspidal points where the folding occurs correspond
to points of inflection (zero curvature) in the RW slowness curves. In much
the same way as for bulk phonon focusing, this is accompanied by intense
focusing of SAW energy flux. SAW focusing has been extensively studied, both
theoretically and experimentally, by Maznev and coworkers [82], and could
provide a means for determining elastic constant ratios.

In and near the [110] direction, we see that the response is dominated by
a pSAW, which lies within the band of bulk wave excitations. The calculated
point force response for the [110] direction is shown by the chain dotted curve
in Figure 2.9(a). Essentially identical results are obtained using the Cagniard-
de Hoop technique [41]. The deep dip in this curve is the pSAW arrival, and
the displacement continues to increase after this until the end of the bulk wave
continuum.

In addition to the SAW arrivals, there are bulk L, FT, and ST wave arrivals
that appear at earlier times in the surface response (points a, b, and c in
Figure 2.9(a)). These are much less pronounced than the SAW arrivals.

Figure 2.9(b) shows the corresponding measured responses of the (001)
surface of a Cu single crystal obtained by capillary fracture excitation and
capacitive detection [81]. Apart from experimental rounding in the measured
signals, the measured and calculated responses are in good agreement. Fitting
calculated to measured surface responses is thus a way of obtaining the elastic
constants of solids, whether the full waveform data are used or only the wave
arrivals.

Chai and Wu [25], relying only on SAW arrivals, have measured the direc-
tional dependence of the group velocities of point focus laser-generated SAW
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FIG. 2.9. (a) Calculated and (b) measured surface response of a (001)-oriented copper
crystal in the [100] and [110] directions.

in the (111) surface of silicon and in a unidirectional fiber composite, and have
used a simplex optimization method to recover the elastic constants of this
solid. Their algorithm is similar to the one described earlier in this chapter
for bulk waves. With starting values of Cαβ , they calculate a set of group
velocities that point in the observation directions and thereby obtain the mean
square difference χ2 between calculated and measured velocities. The Cαβ are

then varied to progressively improve the fit and minimize χ2.
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It is usually the case, except for highly anisotropic materials, that the SAW
velocity is more sensitive to the shear moduli than longitudinal moduli such
as C11. It is therefore advantageous for the purpose of elastic constant deter-
mination if bulk longitudinal wave arrivals can also be measured in one or
more directions. This approach has been effectively applied by Wu et al. [83]
to determine the elastic constants of concrete using transient waves excited by
ball impact and the use of a conical transducer.

2.6 Plate Modes

We consider here the response of a thin anisotropic plate to pointlike exci-
tation by laser or other means. The characteristic wavelengths radiated are
supposedly much greater than the thickness h of the plate, i.e., kh ≪ 1, and
so we are concerned only with the three lowest plate modes:

(1) The flexural or antisymmetric mode A0. This mode is dispersive, with
the absolute value of slowness being proportional to ω−1/2. Taking the
z-direction normal to the plate, and the x- and y-directions in the plate,
the directional dependence of the slowness s of this mode is given by
[84, 85]

γ11s
4
x + 4γ16s

3
xsy + 2(γ12 + 2γ66)s

2
xs

2
y + 4γ26sxs

3
y + γ22s

4
y = 12ρ

ω2h2

(2.23)
(2) Two coupled horizontally polarized modes satisfying [84–86]
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The coefficients γij are the stiffnesses appropriate to plane stress, and
are functions of the elastic constants Cij . For the practically important case
of (x, y) being a symmetry plane of an orthotropic medium, γij = (Cij −
Ci3Cj3/C33) for i, j = 1, 2; γ66 = C66, and γ16 = γ26 = 0. In the isotropic
limit the last two modes are uncoupled and become the lowest symmetric
Lamb mode S0 and the lowest shear horizontal mode SH0.

Plate modes exhibit focusing, much as for SAW, with the focusing intensity
being inversely proportional to the curvature of the slowness curve. In the case
of the flexural mode and the slower of the two coupled modes, the slowness
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curve can have concave regions, and consequently there can be focusing caus-
tics. The characteristic patterns of these caustics for cubic symmetry materials
have been worked out by Maznev and Every [85].

Measurements of the laser-generated dispersive flexural mode response of
a silicon wafer have been carried out by Nakano and Nagai [87]. Chen and
Man [88] have carried out measurements on the slower SH0-like mode in an
anisotropic cold-rolled aluminium sheet.

Veidt and Sachse [33] have carried out an extensive study of the coupled
plate modes in a Si wafer and in unidirectional graphite–epoxy laminates,
using a pulsed laser beam as a dipole source and a small-aperture piezoce-
ramic transducer as a monopolar source, as well as a piezoceramic sensor
that responds to lateral and shear motion of the specimen surface. By these
means they were able to generate scan images for the plate modes. They have
modeled the wave arrivals with calculated plate mode group velocities. For
the fiber composites, accurate fits were obtained both outside and within the
cuspidal regions of the wave surface. Consistent values were obtained for the
stiffness coefficients γ11, γ22, γ12, and C66.

2.7 Conclusions

The PS/PR approach to measuring the elastic properties of solids is now
well established, and has proved of value in a number of applications. The
advantages of PS/PR techniques are manifold and varied. Wave propagation
over a wide range of directions can be studied and many elastic constants
recovered in an experiment on a single specimen, obviating the need for
accurate cutting and faceting of samples. Laser excitation and interferometric
detection permit noncontact measurement of elastic constants. Elastic proper-
ties can be inferred from measurements carried out on one side of a specimen,
which has obvious applications in the nondestructive inspection of structures
for materials’ degradation. PS/PR techniques exist for studying large speci-
mens as well as small specimens, thin plates, and so on.

PS/PR techniques span the time domain (transient excitation) as well as the
frequency domain (tone burst excitation), and in essence measure the time or
frequency domain Green’s function of a solid. The theoretical modeling that
is required for extracting information about a specimen from measured data is
generally much more complicated than for plane wave techniques, but easily
within the capability of any modern personal computer. Measurements carried
out in the far field, which encompasses phonon imaging, the measurement
of wave arrivals by laser techniques, etc., can be interpreted on the basis of
the ray approximation, which is a significant simplification. In the special
case of data pertaining to symmetry directions, for which the phase and group
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velocities coincide, the elastic constant recovery is the same as for plane wave
techniques.

There remain many challenging problems both from an experimental point
of view and in modeling and interpretation, but PS/PR techniques are suffi-
ciently well established that one can anticipate their continued use in a wide
variety of applications.
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