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On the determination of sound speeds in cubic crystals and 
isotropic media using a broadband ultrasonic 
point-source/point-receiver method 

Kwang Yul Kim, Wolfgang Sachse, and A.G. Every a) 
Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York !4853 

(Received 1 August 1990; revised 20 October 1992; accepted 20 October 1992) 

This paper describes methods for determining the speeds of elastic waves propagating in cubic 
single crystals using a broadband point-source and point-receiver, i.e., PS/PR, technique in 
which transient ultrasonic pulses are simultaneously propagated over a broad angular range of 
directions in a specimen. Emphasis is given to determination of all three wave speeds from one 
detected waveform resulting from a single excitation pulse. First described is the determination 
of both longitudinal and shear wave speeds in an isotropic solid from the waveform detected by 
an arbitrarily located sensor. Then, measurements made in various directions in (100)-, 
( 110)-, and ( 111 )-oriented silicon single crystal plates are analyzed. It is found that one 
obtains the most accurate determination of the three wave speeds from a single waveform 
detected by the sensors located in a ( 101)-type direction in both ( 100)- and ( 110)-oriented 
crystal specimens. It is found that a pointlike capacitive displacement sensor generally yields 
better results for the wave-speed measurements than a pointlike piezoelectric transducer. 

PACS numbers: 43.35.Cg, 43.35.Yb 

INTRODUCTION 

There are many techniques that have been used for the 
measurement of the speed of propagation of sound in aniso- 
tropic media. These include ultrasonic plane-wave tech- 
niques which utilize specific transducers energized by broad- 
band, narrow-band, or rf (radio frequency) burst pulse or 
continuous-wave (cw) excitations to generate longitudinal 
or shear waves in a specimen. With the pulse methods, the 
speed of sound is typically determined by sing-around, • dou- 
ble-pulse, 2 pulse-superposition, 3 or echo-overlap 4 tech- 
niques while the cw techniques are most commonly based on 
transmission measurements 5-7 or various forms of spectro- 
meters. 8 These techniques and variations thereof are re- 
viewed in a number of review articles and monographs, cf. 
Refs. 9-11. All of them are capable of detecting very small 
changes in wave speed, typically to better than one part in 
10 5 . 

An recent alternative to the plane-wave technique is 
that utilizing the transient signals generated by a source of 
small aperture and detected by a small aperture, "point" 
receiving transducer. The apertures of both excitation 
source and detecting sensor are much smaller than the domi- 
nant wavelength of the generated signal and the source-to- 
receiver separation. This testing configuration has been 
called the point-source/point-receiver (PS/PR), tech- 
nique. •2 The point source of known time characteristics gen- 
erates signals which simultaneously propagate over a broad 
angular range of directions in a specimen where they are 

Permanent address: University of the Witwatersrand, Johannesburg, 
South Africa. 

detected by a point receiver at an arbitrary receiver site. Al- 
though the resulting waveforms are more complex than 
plane-wave signals, the advantages of this method include its 
simplicity and the possibility for determining all the wave 
speeds of an elastic solid from the waveform resulting from a 
single excitation pulse. Other advantages include minimal 
surface preparation and the ability to test specimens of arbi- 
trary geometry. 

The transient elastic waves are generated on the surface 
of the specimen by broadband excitation sources which have 
included the fracture of a very small capillary •3 or a pencil 
lead, TM the bombardment with radiation of very short dura- 
tion pulses of high-intensity lasers, •5 electron beams, •6 or x 
rays. •7 A discussion of the requirements and operational 
characteristics of a number of sources and receivers which 

can be used as the basis ofa PS/PR measurement system has 
been given. •8 When PS/PR signals are to be used for wave- 
speed measurements, the transient characteristic of these 
signals require that single-shot time interval counters be 
used or that the signals be recorded with a waveform digi- 
tizer for subsequent determination of the arrival times of 
various wave modes. Because waveform digitizers capable of 
sampling analog signals at GHz sampling rates are becoming 
available, it should become possible to determine wave 
speeds with increasingly higher resolution. 

Examples of wave-speed measurements in isotropic ma- 
terials made by the PS/PR technique were provided by the 
authors, •2'•9 using the glass capillary fracture as a source 
and measuring the arrival times of the signals at epicenter 
with miniature piezoelectric detectors. Features of the 
PS/PR method related to wave-speed measurements in 
platelike specimens have been described by Hsu. 2ø Measure- 
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ments using a high-intensity laser beam as a source and a 
laser interferometer as a sensor have been carried out by 
other investigators. 2•-25 The advantage of the latter is that it 
utilizes a noncontact source and receiver, thus requiring no 
bond correction as is the case for piezoelectric transducers. 
Such measurements can also be made at high temperatures. 
However, the laser-based measurements suffer from a poor 
signal-to-noise ratio and thus usually require signal averag- 
ing to improve it. Furthermore, a high-intensity beam some- 
times results in surface damage by ablation. 

Recently, Aussel and Monchalin 2• have applied the la- 
ser beam technique to make wave-speed measurements in 
cubic single crystals of germanium of (100), (110), and 
(111) orientations. They used a combination of epicentral 
signals to determine the three elastic constants of germani- 
urn. More recently, Castagn•de et al. •6-28 used waveform 
data obtained by scanning a laser beam over the surface of 
several anisotropic composite materials to determine all the 
elastic constants of the materials whose symmetry was high- 
er than or equal to orthotropic. 

In this paper, we describe methods of determining wave 
speeds from both epicentral and off-epicentral signals de- 
tected by suitably positioned sensors. Special emphasis is 
given to the determination of all the wave speeds pertaining 
to cubic and isotropic elastic solids from a single waveform 
measured in one particular source/receiver configuration. 
This provides for an expedient determination of wave speeds 
in various directions in a material and it also eliminates the 

errors associated with using crystal specimens of different 
orientations Which may possess slightly different elastic 
moduli. It will be shown that this requires the determination 
of the arrivals of various wave-mode fronts including those 
corresponding to longitudinal and transverse waves, their 
multiple reflections from the free surfaces of the specimen, 
wave mode-converted signals as well as head-wave fronts. 

Three optically polished silicon single-crystal disks of 
(100), (110), and ( 111 ) orientations, which were 7.62 cm in 
diameter and approximately 1.0 cm thick, were used as 
specimens. The testing geometry of these specimens is shown 
in Fig. 1 (a)-(c). Plates of soda-lime glass and polycrystal- 
line aluminum alloy 6061-T661 were used as elastically iso- 
tropic specimens. A glass capillary fracture, which is charac- 
terized as a vertical, monopolar Heaviside step force, with 
risetime less than 100 ns, was adopted as the excitation 
source principally because it generates much stronger sig- 
nals when compared to those generated by a high-intensity 
laser pulse, which was also occasionally used to serve as a 
different mode of excitation. The signals were detected with 
either a capacitive displacement transducer of 1-mm aper- 
ture or a piezoelectric transducer with aperture of 1.3 mm. 
The former was principally used to detect the signals from 
the capillary source while the latter was used to detect sig- 
nals from the capillary as well as the pulsed laser sources. 

I. THEORY 

Considerable effort has been devoted to the calculation 

of transient waveforms from various excitation sources in 

isotropic, infinite elastic continua, half-spaces, and plates 

(a) 

h 

(100) (110) 

(010) 

(b) v 

< Vr•'h > (1i0) 

(101) 

(c) T 
h 

(111) 

-)(- Source 

ß .• Sensor 

FIG. 1. Locations of excitation sources and sensors on the single-crystal 
specimens of silicon. (a) (100)-oriented crystal. (b) (101)-oriented crys- 
tal. (c) ( 111)-oriented crystal. 

(cf. Ref. 29), and for propagation in epicentral 3ø and near- 
field, off-epicentral directions of an isotropic, bounded plate 
of infinite dimensions. 31-34 Synthetic waveforms from mon- 
opolar and dipolar point sources as well as line forces have 
been computed. The source-time functions are typically a 
delta function, Heaviside step function, linear or parabolic 
ramp-step functions, among others. Viscoelastic dissipation 
effects of the medium have also been considered. 35'36 Such 

calculations have provided a catalog of ideal synthetic wave- 
forms against which measured waveforms can be compared. 
Indeed, there is considerable agreement between the com- 
puted and measured waveforms, particularly with regard to 
the location of singularities and discontinuities in slope but 
in many cases also to the precise shape of the waveform. 

Much less is known about the propagation of transient 
signals through a bounded anisotropic medium. The general 
form of the solution to the Cauchy problem has been pro- 
vided by Duff. 37 The propagation of transient waves in infi- 
nite, transversely isotropic media has been analyzed by Ca- 
meron and Eason 38 and Buchwald 39 and asymptotic 
far-field solutions have been explored by Buchwald, 39 
Yeats, 4ø and Tverdoklebov and Rose. 4• The central idea 
emerging from these theoretical considerations is that singu- 
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larities and discontinuities in the wave field propagate on 
primary and secondary wave fronts. These wave fronts can 
be predicted from consideration of the wave or group veloc- 
ity surface of the medium. However, to the authors' knowl- 
edge, there are, as yet, no published waveforms that can be 
used for comparison with our measured signals. 

For isotropic media and in the absence of dispersion, the 
group and phase velocity surfaces coincide, but for aniso- 
tropic media these two surfaces are usually distinct from 
each other. However, as we will see, in certain high symme- 
try directions, they may again coincide. The shape of the 
group velocity surface is, in general, much more complex 
than that of the phase velocity surface. 37'42 Depending on 
the material's symmetry and the degree of anisotropy, it is 
not unusual that the former will contain cuspidal edges 
where the surface folds back on itself. Within these folded 

regions, there are multiple group velocities in each direction 
and for a particular wave branch. This must be borne in 
mind when interpreting transient waveforms. At the same 
time it should be remarked that in cases when the degree of 
anisotropy is low, the phase and group velocities lie close to 
each other and their difference may be less than the experi- 
mental error involved in their determination. Thus existing 
elastic constant data derived on the basis of phase velocity 
considerations, 26-28 where it might be argued that the group 
velocity should have been used are not necessarily invalidat- 
ed. At the very least, they can be regarded as approximate 
fits to experimental data. Indeed, because of the mathemat- 
ical complexity of the group velocity surface and the indirect 
procedure that is required to determine the elastic constants 
by matching group velocities, there is some merit to using a 
fit to phase velocities as a logical step in a procedure for 
limiting the parameter domain. 

The experimental results that we present below for sili- 
con pertain to waves propagating in or close to the three high 
symmetry directions, (100), (110), and (111). With the 
exception of transverse waves propagating in a (111)-type 
direction, waves whose normals lie in these high symmetry 
directions also have group velocities in the same directions 
and the phase and group velocities coincide. Thus we are 
able to make use of the simple formulas that exist for phase 
velocities in these directions to extract elastic constants from 

our signals. However, because of the complex folding of the 
wave surface, there are also waves whose normals lie well 

away from the high symmetry directions but that have ray 
vectors lying in these symmetry directions. These oblique 
waves are present in some of our waveforms and, therefore, 
our interpretation in the following section must be broad- 
ened to take them into account. 

A solid of cubic symmetry is characterized by three in- 
dependent elastic constants Cll, C12, and C44 (see Ref. 43). 
The elastic wave equation for such a medium admits plane- 
wave solutions which are governed by the Christoffel equa- 
tion, 44•6 

(l•rs --pV26rs)Us =0, (1) 
where 

C12 + C44)nrns (r•s) Frs -- 2 n2 2 • (2) Cllnr + C44 ( -- n r) (r=s) 

is the Christoffel tensor, n -- (nr) is the wave normal, p is the 
density of the medium, V is the phase velocity, and 
U = ( Us ) is the polarization vector of the wave. The compo- 
nents of the polarization vector U correspond to the eigen- 
vectors of Frs, and the corresponding eigenvalues p V 2 are 
determined by the secular equation 

II"rs -pV2tSrsl -0. (3) 
Expanding this determinant yields a cubic equation for V 2, 
whose solutions can be conveniently expressed in closed 
form in terms of trigonometric functions. 47'48 There are 
three solutions, one corresponding to quasilongitudinal 
waves and the other two to quasitransverse waves. 

In the symmetry planes, one of the modes is pure trans- 
verse with polarization normal to the plane and the other 
two modes have polarization vectors lying in the plane. The 
secular equation in this case factorizes into a linear and a 
quadratic equation in V 2 and the resulting solutions can be 
easily inverted to recover the elastic constants from phase 
velocity data. 

For n lying in the (001 ) plane at an angle of •b with the 
(100) direction, the three phase velocities are given by 

,oVs21 =C44, (4) 
for the pure shear mode, and 

pV• -- •((Cll --Jr- C44 ) --Jr- [ (ell -- C44 )2 

+ 4(Cll -- C • ) (C44 -- C • )sin 2 2•b ] 1/2}, (5) 
for the quasilongitudinal, and 

pVs5 :•((Cll --Jr- C44 ) -- [(ell --C44) 2 

+ 4(Cll -- C•)(C44 -- C•)sin 2 2•b] 1/2}, (6) 
for the quasishear waves, where C • = (Cll - C12 )/2. The 
calculated directional dependence of these velocities in sili- 
con using the elastic constants Cll = 165.7 GPa, 
C44- 79.56 GPa, and C•- 50.9 GPa and a density of 
p = 2332 kg/m 3 is shown in Fig. 2. 

For n lying in the (110) plane and making an angle CO 
with the (001 ) direction, the three phase velocities are given 
by 

]9 V s21 = C44 cos 2 6/0 --Jr- C• sin 2 co, (7) 
for the pure shear mode and 

pV]: •(O + --Jr- [0 2 --Jr- (C44 -- S t ) -- s 

X (3Cll + C44 -- 4C • )sin 2 2CO ] 1/2}, (8) 
pVs5 :•(O+ -- [02__ --Jr-(C44 --C•) 

X (3Cll + C44 -- 4C•)sin 2 2CO ] 1/2}, (9) 
for the quasilongitudinal and quasitransverse waves, respec- 
tively, where 

D+ ----(Cll __+ C44 ) + (C44 -- C•)sin2 CO. (10) 
The calculated directional dependence of these velocities for 
silicon is shown in Fig. 3. 

Further simplification occurs when n also lies along an 
axis of rotational symmetry. For n in a { 100}-type direction, 
setting •b = 0 ø, Eqs. (4)-(6) yield 

pV•: Cll ( 1 la) 
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FIG. 2. (a) (001) sections of phase and group velocity surfaces of silicon. 
(b) Expanded view of group velocities close to the (001) direction. 

and 

soV 2 2 2 sl =pVs2 =pVs -- C44. (11b) 

This is a pure mode direction in which the one mode is pure 
longitudinal and the other two, which are degenerate, are 
pure transverse. This degeneracy of two modes also defines 
the (100) direction to be an acoustic axis. 49-51 For n along a 
(110)-type direction, we set cp = 90 ø, then Eqs. (7)-(10) 
yield 

pV• = Cll + C44 -- C;, 

pV 2 2 s, =pV• = C•, 

pVs =,,Ors - c44. 

(12a) 

(12b) 

(12c) 

10 

O 
0 2 4 6 10 

V (110) (mm//zs) 

FIG. 3. (110) sections of phase and group velocity surfaces of silicon. 

These are also pure longitudinal and pure transverse wave 
modes, but the three velocities are distinct and so this is not 
an acoustic axis. For n along a (111) direction, setting 
cos cp = 1/V• in Eqs. (7)-(10) yields the velocities 

pV• = Cll + -•(C44 -- C;) (13a) 

and 

p V s 2, p V 2 = s2 -- (C44 + 2C•)/3. (13b) 

Thus, the ( 1 1 1 ) is a pure mode direction as well as an acous- 
tic axis. The above relations between elastic constants and 

phase velocities for waves propagating along the symmetry 
directions in a material of cubic symmetry are summarized 
in Table I. 

For waves propagating in (n, ,//2,//, d-//2 )-type direc- 
tions lying in the ( 111 ) plane [ see Fig. 1 (b) ], the Christoffel 
secular equation takes the form 

(p V 2 -- C44 ) (p V 2 -- C, , -- C44 -31-- C ; ) (to V 2 - C ; ) 

- 4n•2 (n,2 + «) (C44 - C•)2(3C, 1 + C44 -4C•) =0, 
(14) 

2 

where n ,2 = n,//2. This is not a symmetry plane and Eq. ( 1 4) 
does not factorize but it can be solved numerically. The three 
solutions generally correspond to one quasilongitudinal and 
two quasishear modes. 

In measurements of the elastic constants of cubic crys- 
tals with plane waves, there is overwhelming emphasis on 
velocity measurements in the three high symmetry direc- 
tions. Apart from the simplicity of the inversion of the ap- 
propriate formulas to recover the C o's, there are also practi- 
cal considerations related to the mechanism of excitation, 

mode conversion, beam drift and sample preparation, etc. 
Some of these advantages carry over to the PS/PR tech- 
nique, but in the latter technique, close attention must be 
given to the propagation of energy through the specimen. 
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TABLE I. Relations between elastic constants and phase velocities for materials of cubic symmetry. 

Propagation Direction of Type of 
direction particle motion wave mode Relation a 

(100) (100) longitudinal 
(100) in plane (100) shear 
(110) ( 110 ) longitudinal 
(110) (001) shear 
(110) (110) shear 
( 111 ) (111) longitudinal 
(111) in plane ( 111 ) shear 

a Where C • -- (C• -- C•2 )/2. 

Unlike a plane-wave transducer, a point source injects 
energy into the material not via a single wave whose normal 
is perpendicular to the surface, but into all the propagating 
modes of the system including bulk waves, head waves, and 
surface waves, etc., even though our attention here is re- 
stricted principally to bulk waves. The energy of a plane 
wave of normal n and phase velocity V(n) is propagated 
through the medium at the group velocity Vg given by 

Vg -- (V-- n'•7n V)n -+- •7nV. (15) 
In our calculations, we have evaluated Vn V by using an im- 
plicit differentiation of the Christoffel characteristic equa- 
tion. For any given wave 

Vg.n-- V, (16) 
which implies that when Vg is parallel to n, the group and 
phase velocities are equal. This is the case for longitudinal 
and shear waves in the ( 100•- and ( 110}-type directions and 
with longitudinal waves propagating in the (111 }-type di- 
rections. The measurement of these group velocities there- 
fore readily yields the Cu's. For n away from a symmetry 
direction, Vg is, in general, not parallel to n and therefore the 
phase and group velocities are not equivalent. The angular 
separation between the rays of the two velocities can range 
up to 20 ø or more in a material, depending on the degree of 
anisotropy and propagation direction. 

With the exception of certain special cases, there is no 
simple analytical formula available that yields the group ve- 
locity for a given arbitrary direction relative to the material's 
axes. Since the equation of the wave surface could be of de- 
gree as high as 150 (see Ref. 37), it is unlikely that a conve- 
nient closed-form solution to this problem will be readily 
forthcoming. There is the option of numerical methods for 
obtaining n and Vg but considerable care must be exercised 
to be certain of locating all collinear Vg's. We have made use 
of a Mont6 Carlo method to generate a large number of ran- 
domly directed n's and then sorted the associated ray vectors 
into a grid of directions. Figure 2 shows a (010) section of 
the wave surface of silicon which has been calculated in this 

-- 

way while Fig. 3 shows a (110) section. Each point repre- 
sents a ray vector which lies within 0.05 ø of the plane. For 
comparison, the phase velocities in the plane are also shown. 

It is seen that the longitudinal sheet of the wave surface 
is the simplest of the three. It possesses no cuspidal edges and 

so there are no multiple velocities. The rays in this section 
are all associated with n's lying in the plane and the effect of 
anisotropy is simply to effect a tilting of Vg with respect to n 
in the plane. 

The longitudinal phase and group velocities in the three 
principal directions coincide and the signal arrival time can 
be simply interpreted in terms of the material's elastic con- 
stants via Eqs. (1 l a), (12a), and (13a). Along most non- 
principal directions, the longitudinal phase and group veloc- 
ities differ by •< 1%. Therefore, in our interpretation of 
experimental results for directions fairly close to the (100) 
direction, we have used the phase velocity formula for the 
longitudinal velocity. The error incurred thereby is less than 
the sum of the experimental uncertainties. 

For the transverse modes, the difference between the 
phase and group velocities is much larger, ranging up to 
about 10% in some directions, hence, it is important to make 
the distinction. Both sheets of the two transverse modes ex- 

hibit cuspidal features. This is most pronounced for the slow 
transverse sheet near the (001) direction. Some of these 
edges are associated with in-plane n's where a reversal in the 
tilting of Vg occurs. Others are associated with folds in the 
wave surface that occur across the symmetry plane and 
which map an n on one side of the plane to a Vg on the other. 
One peculiar consequence of this folding is that some por- 
tions of the slow transverse sheet penetrate out beyond the 
fast transverse sheet, so that the distinction between slow 
and fast transverse becomes somewhat blurred. Of impor- 
tance in the interpretation of our experimental results is the 
fact that in the (001 ) direction there are several group veloc- 
ities. Taking also into account the fact that the receiver has a 
finite aperture, it is apparent that there is not just one trans- 
verse signal velocity, but rather, a range of velocities. This 
will be discussed further below. The highest group velocity 
in the (001 ) direction belongs to waves with n lying along 
this axis, so the earliest arrival time of the signal in this direc- 
tion can be directly related to C44. 

In a (110)-type direction, the fast and slow transverse 
waves are well separated in their arrival. The slow transverse 
branch possesses no cuspidal features in this region and the 
phase and group velocities are parallel hence the signal arriv- 
al time yields C•. The fast transverse branch possesses a 
small cuspidal feature but the corresponding velocity spread 
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is •< 1% for the detector used to make the measurements to 

be described and hence the signal arrival time can be simply 
related to C44. 

The propagation of transverse waves in a { 111}-type 
direction is more complicated because a conical degeneracy 
of the two transverse branches occurs here. A transverse 

wave with n parallel to (111) does not have a single ray 
vector but rather a circular cone of ray vectors which dis- 
perse the energy of this wave away from the ( 111 ) direction 
in an effect known as internal conical refraction. 45'46 Never- 
theless, inspection of Fig. 3 reveals that there is a marked 
concentration of transverse ray vectors in the (111) direc- 
tion. This is borne out in the experimental results which we 
will describe later, in which there is a clear indication of a 
transverse wave signal in that direction. This is accounted 
for by folding in the slow transverse sheet of the wave surface 
which maps the ray vectors for six widely separated n's into 
the ( 111 ) direction. Even though these n's lie in symmetry 
planes, the corresponding velocities cannot be expressed in a 
simple way in terms of the material's elastic constants. Our 
measurements on silicon yield a value of p V• 2 close to 
( C44 + 2C • )/3, which is predicted for the phase velocity in 
this direction, but this is not expected to be true for all mate- 
rials. 

We compare in the next paragraphs the information 
that can be extracted from the signals which have propagat- 
ed in various directions in specimens of different orienta- 
tions. Corresponding to the epicentral rays in a (100)-ori- 
ented crystal are only two relations for the phase velocities 
and therefore determination of all three wave speeds is not 
possible with them. Of particular interest for determining 
the three phase velocities among the rays propagating in off- 
epicentral directions is that of a { 110}-type direction be- 
cause associated with this direction are one purely longitudi- 
nal and two purely transverse modes whose distinct phase 
velocities are given by Eqs. ( 12a)-(12c). 

Also of importance are longitudinal rays that have un- 
dergone multiple reflections in propagating from the source 
located on the top surface of the specimen to the detector 
located in a { 110}-type direction on the bottom surface, as 
depicted in Fig. 1 (a). These rays are more easily identifiable 
than other types of multiply reflected or mode-converted 
rays. The directions of rays with an initial angle 6 are crystal- 
lographically equivalent before and after reflection and the 
incident and reflection angles associated with such longitu- 
dinal rays are both equal to 6. If one can identify in a single 
waveform the arrivals of the first purely longitudinal mode, 
the two purely transverse modes, and some of multiply re- 
flected longitudinal rays, it is possible to determine from the 
differences of these arrival times, three wave speeds by using 
Eqs. ( 12a)-(12c) and Eq. ( 5 ). In principle, it is possible to 
make use of a signal detected by the sensor of any direction 6, 
but the determination of the wave speeds using Eqs. (4)-(6) 
is far more complicated. For the reasons mentioned earlier, 
of particular interest is the determination of the three wave 
speeds with a ( 101 )-oriented crystal using an ( 101 )-direc- 
tional epicentral ray and an off-epicentral signal detected by 
a sensor positioned in a (110) direction from the excitation 
source on the surface opposite to the source. This testing 
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configuration is illustrated in Fig. 1 (b). 
The case of isotropic solids is far simpler. It is well 

known that the two elastic moduli of an isotropic solid, the 
Lam• constants, A and p, are related to the longitudinal and 
shear wave speeds by: p V•2 _ C44 -- C • = F (pure trans- 
verse mode) and p V• = C• -- A + 2F (pure longitudinal 
mode). 

The calculated normal displacement signal and impulse 
response (or Green's function) at epicenter resulting from a 
vertical, monopolar Heaviside step excitation are shown in 
Fig. 4. These data were generated using V•/Vs = 1.7 and a 
plate specimen of thickness h. Similar theoretical curves but 
with V•/Vs = 2 and a horizontal dipole source on the surface 
with the receiver located a distance of 2h away from the 
epicenter are shown in Fig. 5. In both these figures, the ab- 
scissa is expressed in units of normalized time, equal to 
V•t/h, and the ordinate represents the signal magnitude in 
arbitrary units. Here, L, S and H denote, respectively, the 
longitudinal, shear, and head wave arrivals, and mLnS rep- 
resents the arrival of a ray which, through mode conversion 
at the surface, travels m times in the longitudinal mode and n 
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times in the shear mode in propagating from the source to 
the receiver. If the instant of source excitation is unknown, 

one needs to identify in the detected waveform the arrivals of 
at least three modes in order to determine the two wave 

speeds V• and Vs. This is the case when a glass capillary 
fracture is the excitation. Otherwise identification of two dif- 

ferent wave mode arrivals suffices. The determination of 

both V• and Vs is straightforward from an epicentral signal. 
However, for off-epicentral signals, one may need to identify 
and to determine the arrivals not only of the L and S modes 
but also the 3L, 5L ..... nL, 2LS, L 2S, and head wave modes, 
and so on, with the corresponding arrivals denoted by t•, t•, 
t31 , rs! .... , tnl , t21s, ti2s, and th, where the subscript n is a posi- 
tive odd integer. 

II. EXPERIMENTAL DATA AND RESULTS 

An excitation source of a vertical single force whose 
time evolution is a Heaviside step function with risetime less 
than 100 ns was generated by breaking a glass capillary of 80 
pm OD X 50 pm ID with a razor blade on the surface of a 
specimen. Irradiation with a high intensity Nd:YAG laser 
pulse of 4-ns duration on the surface of a specimen was also 
used as a source resembling a horizontal dipole evolving as a 
Heaviside step function in time. The elastic waves generated 
by these sources propagate in a broad angular range of direc- 
tions. Detection of the ultrasonic signals was at a particular 
location either by a capacitive displacement sensor whose 
circular sensing area was 1 mm in diameter or by a piezoelec- 
tric transducer having an active sensing element of 1.3-mm 
diameter. The general profile of the signal detected by the 
piezoelectric sensor was found to bear some resemblance to a 
normal velocity signal that was obtained by differentiating 
the displacement normal to the surface with respect to time. 
The signals detected by these sensors were amplified by a 
charge amplifier of bandwidth of 10 kHz to 10 MHz for the 
case of the capacitive sensor and by a preamplifier with 
bandwidth of 100 kHz to 20 MHz for the case of the piezoe- 
lectric transducer. The amplified signals were input to wave- 
form recorders for digitization at a rate of 60 MHz with 10- 
bit resolution. The data in the memory of the digitizer could 
be transferred to a minicomputer for storage and subsequent 
processing. Additional details of the measurement system 
has been described previously. 52'53 

The following criteria were adopted for the identifica- 
tion of the arrivals of various modes in the detected signals: 
(i) The arrival of a particular mode is characterized as a step 
or a sudden change of shape in the displacement signal and 
as a sharp positive or negative peak in the velocity signal. (ii) 
The first arrival is always the longitudinal (L) mode and the 
arrivals of this and the multiply reflected longitudinal 
modes, i.e., (3L,SL,7L,...), are regularly spaced in the epi- 
central signal. (iii) For most engineering materials, Pois- 
son's ratio lies between 0.1 and 0.4, corresponding to Vs/V• 
ranging between 0.4 and 0.67. For epicentral and near-epi- 
central signals, the L mode is followed by shear modes which 
may include fast shear (S) and slow shear (S') modes. In the 
epicentral waveforms, these shear modes are followed by a 
3L mode and then the 2LS, 2LS', L 2S, and L 2S' modes 
whose arrivals may or may not appear as pronounced fea- 

tures, depending on the efficiency of the mode conversion. 
(vi) In the velocity signal, the arrivals of L, 3L, 5L,... have 
the same polarity while the 2LSand 2L$' modes are of oppo- 
site polarity compared to the L 25'and L 25' modes. This oc- 
curs because on reflection at a free surface, a wave changes 
its polarity. (v) For epicentral and near-epicentral wave- 
forms, there are strong similarities between the signals im- 
mediately following the arrivals of multiply reflected longi- 
tudinal modes. Such similarities can often also be observed 

in the off-epicentral waveforms, following, say, the 5L, 7L, 
9L, 11L, etc. modes. Before and around the arrival of a 3L 
mode, the off-epicentral signals include the effects of S, $ ', H 
(head wave) modes which may die out quickly as the signals 
propagate farther. Consequently, there is little similarity in 
the signals following the L and 3L modes with those follow- 
ing the other multiply reflected L modes. (vi) Knowledge of 
the theoretical Green's functions as shown in Figs. 4 and 5 
assists in identifying the various modes, particularly when 
they are closely spaced or otherwise difficult to identify. 

In all the detected signals described in the following sec- 
tions, the arrival time h of the first longitudinal mode (L) 
was identified as the point at which the signal amplitude 
suddenly rises above the noise level. Differences between the 
arrival times of the L and the multiply reflected longitudinal 
modes (3L,SL,7L,...) were determined from the velocity 
curve by measuring the times between the sharp peaks. Al- 
though these occur shortly after the arrivals of these modes, 
since time intervals were measured, the errors in the calcula- 
tion of the wave speeds are thought to be negligible. 

A. Isotropic media 

An epicentral waveform generated by a glass capillary 
fracture and detected by the capacitive transducer is shown 
in Fig. 6. The specimen was a soda-lime glass plate of thick- 
ness 0.962 cm. When this signal is differentiated with respect 
to time to obtain the velocity signal, the arrivals of various 
wave modes become clearly identifiable, similar to the im- 
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pulse response shown in Fig. 4. Denoting the thickness of the 
plate by h, one derives the longitudinal wave speed 

Vt = (n-- 1)h/(t,l--tt). (17) 

For determination of the shear wave speed, we make use of 
the arrival of the L 2S mode instead of the S or the 2LS mode, 
provided that the L 2S mode is clearly identifiable as shown 
in Fig. 6. With this procedure, one minimizes the error asso- 
ciated with the calculated shear wave speed. The shear wave 
speed is given by 

Vs = 2h /(t•2s - t•). (18) 

The longitudinal and shear wave speeds of glass calculated 
using the arrivals of L, L 2S, and 7L modes and Eqs. (17) 
and (18) are 

V• = 0.579 cm/tts and Vs = 0.340 cm/tts. 

For an off-epicentral receiver located at r = qh from the 
epicenter of an elastically isotropic plate, one can choose any 
combination of three arrivals of L, S, nL, 2LS, and head 
wave modes. For detection of the head wave, the receiver 

position r should be greater than h tan [ sin - • ( Vs/V• ) ]. 
This corresponds to a distance of 0.738 cm for the aluminum 
alloy plate specimen whose thickness was 1.288 cm. If one 
chooses the L, S, and nL modes, then V• and Vx are obtained 
from the following relations 

V• = [ (n2 + q2) •/• -- ( 1 + q•)•/2] (19) 
t.• -- t• 

1 1 ts -- tt 
-- { . (20) 

Vs V, ( 1 + q•) 
Similarly, measurement of the arrivals of the L, 3L, and H 
modes can be used to obtain an additional equation relating 
the wave speeds. That is, 

h ( 1/2 t h --tt :-•t q-- (1 --I-q 2) 
(21) 

The determination of both V• and Vs from Eqs. ( 19)-(21 ) is 
straightforward once the data of t•, ts, and th is known. 

The off-epicentral waveform shown in Fig. 7 was detect- 
ed in an isotropic, polycrystalline aluminum alloy plate of 
thickness h = 1.288 cm at a receiver position r = 1.836h 
( = 2.4 cm) from a pulsed laser source. The thermoelastic 
expansion resulting from the deposition of the laser's energy 
gives rise to a large horizontal dipole force which generates 
strong longitudinal wave modes along the surface. These 
continuously shed head waves into the interior of the speci- 
men which can be detected by a receiving transducer. Refer- 
ring to Fig. 5 and recalling that the piezoelectric signal ap- 
proximately resembles a velocity signal, the arrivals of var- 
ious wave modes can be identified as in Fig. 7. From the 
arrival time data of t•, ts, t3•, and G, one obtains from Eqs. 
( 19 ) and (20) 

V• -- 0.627 cm/tts and Vs -- 0.310 cm/tts. 

An identical result is obtained using Eqs. (19) and (21). 
Using the arrivals of 2LS and other two modes also yields 
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FIG. 7. Signal detected by a piezoelectric transducer at a 24-mm positions 
from epicenter using a 12.88-mm-thick A1 plate and a laser beam source. 

nearly identical results. It was also found that both Vt and Vs 
could be determined from the arrivals of L, S, 3L, 5L, and 
etc. which were identified in the off-epicentral signals from a 
capillary fracture source. The arrival of head waves could 
not be detected in the signals from the capillary fracture 
source because this source generates relatively weak hori- 
zontal displacements. The off-epicentral signals resulting 
from a capillary fracture source are not shown. 

B. Silicon cubic single crystals 

1. Epicentral waveforms 

Measurements were made on three, disk-shaped speci- 
mens of single crystals of silicon. The normals to the surface 
of the disks were oriented along the (100), ( 101 ), or ( 111 ) 
directions as illustrated in Fig. 1. The diameter of the Si 
crystals were 7.62 cm and approximately 1 cm in thickness. 
In Figs. 8-10 are shown the epicentral displacement signals 
generated by capillary fractures and detected by the capaci- 
tive transducer. The time derivatives of the signals (corre- 
sponding to the velocity) are also shown. We note the strong 
resemblence between these displacement waveforms and the 
epicentral signal for an isotropic plate shown in Fig. 4. Be- 
cause the theoretical Green's functions for an anisotropic 
media are not yet available, we apply the knowledge ob- 
tained from the isotropic case to provide guidance in identi- 
fying the various wave arrivals in the waveforms of the aniso- 
tropic specimens. 

However, as shown in Fig. 8 (a), the epicentral response 
of a ( 100)-oriented crystal exhibits an unexpected behavior. 
The arrival of the first longitudinal wave (L) mode causes a 
sharp rise in normal surface displacement, which is quickly 
followed by a plateau, completely unlike the waveforms of 
isotropic media. This is followed by a surprisingly large 
"dip" which corresponds to the arrival of the first (fast) 
shear mode. This feature is also completely absent in signals 
detected in isotropic media. The 1-mm-diam capacitive 
transducer which was used to detect these signals subtends 
an angle of 5.8 ø viewed from the excitation point. Referring 
to the wave surface shown in Fig. 2 (b) in the vicinity of the 
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(100) direction one can determine the range of group veloc- 
ities for shear modes propagating within 2.9 ø of this direc- 
tion. The range of arrival times of these two shear modes is 
calculated to be about 120 ns, which is approximately equal 
to the width of the dip. It thus appears that the arrival of the 
fastest shear mode is accompanied by a downward motion in 
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FIG. 10. Epicentral waveforms ofa ( 111 )-oriented Si crystal obtained with 
capillary fracture source and capacitive transducer. 

the normal displacement of the surface while the arrival of 
the slowest shear mode restores positive surface velocity. A 
careful examination of the arrival times in the velocity curve 
of Fig. 8(b) and comparison with the phase velocities ob- 
tained by plane wave methods by others 55'56 as well as us, 
reveals that the minimum point denoted by S in the velocity 
signal corresponds very closely to the phase velocity of shear 
wave propagating in (100•-type directions. 

One can clearly identify in the later portion of the wave- 
forms the regularly spaced arrivals of the multiply reflected 
longitudinal modes. The arrival times of the L and 11L sig- 
nals were used to calculate V/. For a more accurate deter- 
mination of the shear wave phase velocity, we used the arriv- 
al of the L 2S signal rather than the S signal. The wave speeds 
determined in a (100) direction of a single crystal of silicon 
are 

V/-- 0.843 cm//ts and Vs - 0.580 cm//ts. 

The shear motions generated by the glass capillary frac- 
ture source in a (101)-oriented crystal specimen results 
principally in the fast shear mode whose particle displace- 
ments are in the (010) direction. This wave is directly relat- 
ed to the elastic constant C44. The first arrival of the slow 
shear mode (S') whose particle displacements are in the 
( 101 ) direction is related to the elastic constant C •, but this 
does not appear in the velocity signal shown in Fig. 9. When 
the first longitudinal mode (L) reflects on the bottom sur- 
face, it is converted into longitudinal (2L), fast shear (LS), 
and slow shear (LS') modes. These travel back to the top 
surface, whereupon the 2L mode is reflected and mode-con- 
verted into longitudinal (3L), fast shear (2LS), and slow 
shear (2LS') modes. These are the signals detected by the 
transducer at the bottom surface. After reflection at the top 
surface, the LS and LS' modes are converted into fast shear 
(L 2S) and slow shear (L 2S') modes, respectively, which 
also appear in the signal detected on the bottom surface. One 
can also identify the arrivals of 5L, 4LS, 4LS ', 3L 2S, 3L 2S ', 
and so on, even though the arrivals of these modes become 
less distinct as the waves propagate farther in the material 
and are attenuated. One may be inclined to assign the local 
minimum point found between the L 2Sand L 2S' arrivals as 
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the arrival of the L 2S' mode. However, this is not the case 
because the time interval between the arrivals of the identi- 

fied 3L and L 2S' modes is twice the difference between the 

arrival times of 3L and 2LS' as expected. The L 2S' signal 
arrives just prior to that of the 5L signal because the wave 
speed V• is slightly greater than 0.5 Vt. Again, the arrivals of 
L, 11L, L 2S, and L 2S' (but not the S) signals were used to 
calculate the wave speeds in the ( 101 ) direction 

V• = 0.914 cm/Fs, Vs = 0.581 cm/Fs, 

and 

V• = 0.467 cm/Fs. 

We note that the velocity of the shear wave Vs obtained in 
the (101)-oriented crystal is nearly identical with that ob- 
tained using a (100)-oriented crystal. 

The velocity waveform shown in Fig. 10 was obtained 
on a (111)-oriented crystal with the capillary fracture 
source. There appears to be no appreciable shear mode sig- 
nal. Furthermore, the L 2S and 3L 2S modes, etc., are also 
missing. However, the multiply reflected longitudinal modes 
are quite pronounced with the 2LS, 4LS, and 6LS modes 
identified in the figure, although the exact arrivals of some of 
these are somewhat difficult to locate because of the noise. 

Measurement of the arrival times of L, 11L, and 2LS yield 
for the wave speeds in the ( 111 ) direction 

V• = 0.935 cm/Fs and Vs -- 0.498 cm/Fs. (22) 

Because of the uncertainties associated with the determina- 

tion of the 2LS arrival and a relatively small difference be- 
tween t2•s and t3t, the value of Vs found by such measure- 
ments may have an error as high as 5 %. As noted earlier, the 
shear wave propagating in the ( 111 ) direction does not have 
its wave normal in that direction and so the procedure for 
extracting an elastic constant from this measurement is not 
straightforward. 

It is noted that the measurements made on signals gen- 
erated by the capillary fracture source and detected with the 
piezoelectric transducer were not as successful for the three 
crystal orientations as those made on signals detected with 
the capacitive transducer. In the piezoelectric transducer 
signals, only the speed of the longitudinal modes could be 
measured with reasonably good accuracy, but the results 
were never better than those made from capacitive trans- 
ducer detected signals. The other wave modes, such as S, S ', 
2LS, 2LS ', L 2S, and L 2S' were, in general, very difficult to 
identify in the signals that had been detected with the piezo- 
electric transducer and in some cases could not be found at 

all. In an attempt to circumvent this difficulty, the use of a 
pulsed laser operating as a thermoelastic source was ex- 
plored with the (101 )-oriented crystal specimen. The epi- 
central signal detected by the piezoelectric sensor is shown in 
Fig. 11. The laser source induces much stronger shear mo- 
tion in the epicentral direction because the thermal expan- 
sions accompanying the deposition of laser photon energy 
results in a stronger horizontal excitation as mentioned ear- 
lier. Unfortunately, the detection of laser-generated signals 
by the capacitive transducer was not successful because of its 
lower sensitivity. The only alternative was to increase the 
intensity of the laser excitation, but this was ruled out to 
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FIG. 11. Epicentral waveform ofa ( 101 )-oriented Si crystal obtained with a 
pulsed laser source and detected with a piezoelectric transducer. 

avoid ablation damage to the surface of the specimens. Fig- 
ure 11 is a sample result with the arrivals of the L, S, S ', and 
3L modes indicated. The arrivals of the other modes are 
difficult to identify. The arrival of the 3L mode was deter- 
mined by recognizing similarities in the signal between the 
arrivals of the L and the S modes with the signal following 
the 3L arrival. From the arrival times of the L, S, S' and 3L 
modes, one finds 

and 

V• = 0.913 cm/Fs, 

V• = 0.467 cm/Fs. 

Vs - 0.572 cm/Fs, 

However, since the time intervals between arrivals of the 

modes used for the calculation of the above wave speeds are 
smaller than those for the modes used in the displacement 
transducer signal from the capillary source, the above results 
will likely have larger errors. 

In summary, epicentral signals yield very precise longi- 
tudinal wave speeds with accuracies approaching 0.3%, 
which can be improved by using a waveform digitization rate 
higher than that used in the present study. If three crystals of 
(100), (110), and (111) orientations are available with 
nearly identical elastic moduli, accurate values of three lon- 
gitudinal wave speeds in each of these directions can be de- 
termined. However, these three longitudinal wave speeds are 
not sufficient to determine the values of the three elastic con- 

stants of the material since the formulas relating the longitu- 
dinal wave speeds to elastic constants in the (100), (110), 
and ( 111 ) directions in a cubic material are not independent 
of each other (recall Table I). At least one additional shear 
wave speed is needed to determine the three elastic con- 
stants. For the measurement of the wave speed of a fast shear 
mode associated with the elastic constant C44, either (100)- 
or (110)-type oriented crystals can be used, with either one 
yielding virtually the same accuracy. However, as the pres- 
ent study has shown, one should pay particular attention 
when making measurements in a (100)-type crystal whose 
epicentral signal exhibits the unusual behavior at the arrivals 
of shear modes with a range of group velocities. Clearly, if 
one wishes to determine all three wave speeds as accurately 
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as possible so that all three elastic constants of the material 
can be determined from a single epicentral waveform, one 
should use a (110)-type oriented crystal with a capillary 
fracture source and a capacitive sensor to detect the signals. 

2. Off-epicentral waveforms 

The determination of three wave speeds for waves prop- 
agating in an arbitrary off-epicentral direction is difficult for 
several reasons. The governing Christoffel equations relat- 
ing wave speeds and elastic constants are complicated func- 
tions relating the wave speeds, elastic constants and propa- 
gation direction. Reflection and mode conversion of the 
waves at the free surfaces complicate matters. As a result, 
the identification of various modes in the received signals is 
difficult. For this reason, we focus here only on the simplest 
case, namely, the off-epicentral signals detected in (100)- 
and ( 101)-oriented crystals by a sensor located in a (110)- 
type direction from the excitation source. For a (111)-ori- 
ented crystal, which has a threefold symmetry, the reflection 
and mode conversion of rays propagating in off-epicentral 
directions is extremely complicated and will not be treated 
here. The governing equations relating the wave speeds and 
the elastic constants for a (100)-oriented crystal are Eqs. 
(4)-(6) while for a ( 101 )-oriented crystal, Eq. (14) also 
applies. 

Figure 12 shows the velocity signal obtained from a dis- 
placement signal detected by a capacitive transducer located 
a distance of V3h from epicenter in a (110) direction from 
the source in a ( 101)-oriented crystal whose thickness h was 
0.997 cm. In Fig. 13 is the signal detected by a piezoelectric 
transducer situated in a (110) direction at a lh (h = 0.991 
cm) unit away from epicenter of a (100)-oriented crystal. 
The arrivals of various modes are identified in both figures. 
The signals in both of the above examples were generated by 
a capillary fracture. It is seen in Fig. 12 that the arrival of the 
3L mode is before the S' mode. Both the S' as well as the S 

modes appear in the waveforms as negative peaks. In the 

0.2 

0.0 

o 

o 
z -0.1 

-0.2 

3L 

S' 

0 1 2 3 4 5 6 

Time (/zs) 

FIG. 12. Off-epicentral velocity signal of a (101)-oriented Si crystal ob- 
tained with a capillary fracture source and a capacitive transducer located 
in a (110) direction from the source. 
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FIG. 13. Off-epicentral signal of a ( 100)-oriented Si crystal obtained with a 
capillary fracture and a piezoelectric transducer located in a (110) direc- 
tion from the source. 

signal shown in Fig. 13, both the S and the S' modes also 
appear as negative peaks arriving prior to the 3L mode. One 
can readily identify in the waveform shown in Fig. 13 the 
positive peaks following the arrivals of the 7L, 9L, 11L 
modes. A similar pattern of ray arrivals is present in the off- 
epicentral signals obtained with isotropic plates (which are 
not shown here). It should be noted that the signals genera- 
ted by monopolar and dipolar sources decrease with their 
travel distance from these sources according to R -• and 
R -2, respectively. As a result, the pattern of ray arrivals 
may be difficult to observe in the signals generated by a rela- 
tively weak dipolar excitation such as the pulsed laser 
source. We note also that in the off-epicentral waveforms, 
the arrivals of the 3L, 5L, 7L, 9L, and 11L modes are more or 
less regularly spaced. This is probably a consequence of the 
small differences between wave speeds of the longitudinal 
modes and the roughly equal increments in acoustic path 
length between them. 

The arrivals of L, S, S', and one (nL) of the multiply 
reflected longitudinal modes can be used to determine the 
three wave speeds. Choosing two or more multiply reflected 
longitudinal modes leads to a larger error because of small 
differences between their wave speeds. Using a set of differ- 
ences in arrival times of these modes, one can form three 
nonlinear simultaneous equations for the three wave speeds. 
The propagation directions of L, S, and S' modes are all 
those of (101}-type and hence one can make use of Eqs. 
( 12a)-( 12c ) to reduce these three equations to one equation 
of one variable. To simplify the equations, the density p is 
here arbitrarily set to unity since it cancels in the final result 
of the wave speed calculation. Let 

and 

and 

and 

•'j • l/Vj - 1/x/C J (23a) 

(23b) 

7' 1 ----(t; -- ts )//•[llO ] (24a) 
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r2 =(t• -- t/)/P[11o ] , (24b) 

wherept • •o I is the acoustic path length which the L, S, and S' 
modes have traveled from the source to the receiver. The 

quantity Pl •ol is equal to V2h for a (100)-oriented crystal 
and to 2h for a ( l01 )-oriented crystal. The above equations 
can be rewritten to obtain the expressions for the elastic con- 
stants 

C• = V• 2-- •-2, (25a) 

c44 - = (;; - )-:, (25) 

Ca 1 __ V•__ •.•-2_ (• __ T1 )--2 • (•; __ •2 )--2, 
(25c) 

Equations (25a)-(25c) permit us to express C•, C•, and 
C • in terms of a single variable • •. We write similarly 

Pnt Pt • •0 ] 
7' 3 : tnl -- t • = , (26) 

Vnl V• 

wherepnt is the acoustic path of the nL mode which, in prop- 
agating from source to receiver, has traveled n times between 
the opposite faces of the crystal specimen. For a ( 100)-ori- 
ented crystal, one obtains 

and 

Pnl: ( n2 n t- 1 ) 1/2h (27a) 

tan •3 = 1/n (27b) 

and for a ( 101 )-oriented crystal 

Pn• = ( n2 q- 3) i/2h. (28) 

The angle •3 in Eq. (27b) was previously defined in Eqs. ( 5 ) 
and (6). A formula for Vnt can be found from Eq. ( 5 ) for a 
( 100)-oriented crystal in a direction of angle •3 and from Eq. 
(14) for a ( 101 )-oriented crystal in a direction specified by 
n•2. Substituting Eqs. (27) and (28) for a (100)-and a 
(101)-oriented crystal, respectively, into Eq. (26) and ex- 
pressing Cid, C44, and C • in terms of the single variable • •, 
one obtains a nonlinear equation of terms of this variable. 
This equation was solved using the "Find Root" program of 
Mathematica. 54 Using only the real, positive root of • •, the 
three wave speeds were calculated according to Eqs. (25a)- 
(25c). 

The three wave speeds obtained from the arrivals of L, S, 
S ', and 3L modes in a ( 101 )-oriented crystal are 

V• = ( C• /p) •/2 = 0.834 cm/tts, 

Vs : ( C44/p)1/2 •. 0.580 cm/tts, 
and 

V.• = ( C ;/to)1/2 _ 0.462 cm/•ts, 
and using, for example, the arrivals of the L, S, S' and 5L 
modes yields 

V• = ( C•l /p) •/2 _ 0.833 cm/•ts, 

Vs _ ( C44/to) •/2 _ 0.580 cm/tts, 
and 

V.• -- ( C •/p) •/2 = 0.461 cm/•ts. 
Similarly in the waveforms of a ( 100)-oriented crystal, if one 
selects the arrivals of the L, S, S ', and 7L modes, one obtains 
for the wave speeds 

V• = (C•/p) •/2 = 0.841 cm/•s, 

Vs: ( C4 4/t o ) 1/2: 0.574 cm/tts, 
and 

V• - (C•/to)1/2 -- 0.467 cm/tts. 
Using other multiply reflected longitudinal modes in- 

stead of the 7L signal resulted in wave-speed values which 
were identical within an experimental error. It is noted that 
the wave speeds obtained from off-epicentral waveforms 
compare very well with those determined from epicentral 
signals. However, we believe that measurements on off-epi- 
central waveforms have greater experimental errors because 
of transducer aperture effects. Also contributing to the error 
are difficulties related to the precise positioning of the detec- 
tor in a { 101 }-type direction relative to the excitation source. 

Table II lists the values of three elastic constants C•, 
C44, and C •, of silicon, where C • = (1/2) (C• -- C12 ), 
which have been obtained in the present study and those 
obtained by others previously. 55'56 It is noted that although 
the prior work utilized different experimental techniques, 
the agreement with the values reported here is, in all cases, 
within --1%. The small differences between the measure- 

ments reported here and the previous work can likely be 
attributed to slight differences in the single-crystal speci- 
mens. 

III. SUMMARY AND CONCLUSIONS 

We have demonstrated in this paper several procedures 
for determining the wave speeds of ultrasonic waves in both 
isotropic and anisotropic specimens. The procedures assume 
that the propagating medium is nondispersive and that the 
differences between the phase and group velocities are negli- 
gible in the propagation directions considered. It was dem- 
onstrated that the longitudinal wave speed can be accurately 
determined from epicentral waveforms. With a (110)-ori- 
ented crystal, values of all three elastic constants can be ac- 
curately determined from just one epicentral waveform. 
This method has advantages in that one can avoid possible 
errors resulting from making measurements on several 
specimens of different orientations which may have slightly 

TABLE II. Elastic constants of single-crystal silicon. The asterisk indicates 
C • = (C,, -- C, 2 )/2. 

Cll C44 C •t, 
References Method [ GPa ] [ GPa ] [ GPa ] 

This work a 166.8 78.7 50.9 

This work b 167.1 78.7 50.9 

Reft 46 c 165.7 79.5 50.9 

Reft 47 d 165.7 79.4 51.0 

aObtained from epicentral waveforms of a (101) oriented crystal in this 
experiment. 
Obtained using the plane-wave broadband pulse technique. 
Obtained using the rf burst pulse echo technique. 
Obtained from determination of ultrasonic wavelengths. 
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differing elastic moduli. We have also shown that the three 
elastic constants can be obtained from one off-epicentral 
waveform detected by the sensor located in a { 110}-type 
direction of either ( 100)- or ( 101 )-oriented crystals. The 
determination of the three wave speeds using the waveforms 
detected by sensors located in general, off-epicentral direc- 
tions from the source is, in principle, possible, provided that 
more than four distinct wave modes can be identified in a 

detected waveform. For those ray directions for which dif- 
ferences between group and phase velocities are significant, 
errors may arise in the determination of the phase velocities 
when measured group velocity data are treated as phase ve- 
locity data and hence the corresponding elastic constants 
will also be in error. This subject will be further discussed in 
a subsequent paper. 

Based on the work described here, the following conclu- 
sions can be drawn. 

(1) The wave speed of longitudinal waves propagating 
in an epicentral direction can be precisely determined from 
the arrivals of L and multiply reflected longitudinal modes. 

(2) An accurate determination of the shear wave speeds 
can be obtained from measurement of the arrivals of L, L 2S, 
and L 2S' modes in the detected epicentral signals. In a 
( 101 )-oriented crystal, one can observe signals correspond- 
ing to the mode converted modes, L 2S and L 2S '. 

(3) Determination of the wave speeds from off-epicen- 
tral waveforms, whether the propagating medium is isotrop- 
ic or not, can be achieved by identifying the arrivals of var- 
ious wave modes, such as L, S, S ', H, and 3L, 5L, 2LS, L 2S, 
and so on. 

(4) The values of the three wave speeds and hence the 
three elastic constants of a cubic single crystal can be deter- 
mined from a single waveform detected by sensors situated 
in { 101 }-type directions whether they are epicentral or not. 
The epicentral waveform yields the most accurate determin- 
ation. 

(5) Because of differing group velocities associated with 
the various shear modes propagating close to { 100}-type di- 
rections, the epicentral displacement signal generated in a 
(100)-oriented crystal by a glass capillary fracture source 
exhibits an unexpected behavior at the shear wave arrivals. 
Coinciding with these arrivals is a sharp dip in the displace- 
ment curve. It appears that the phase velocity of shear wave 
propagating in a (100) direction corresponds to a point of 
sharp negative minimum in the velocity signal. 

(6) A capillary fracture source generates little shear 
motion in waves propagating in an epicentral direction in a 
( 111 )-oriented crystal. Nor does it generate any appreciable 
slow shear (S ') mode propagating in an epicentral direction 
in a ( 101 )-oriented crystal. 

(7) A pulsed laser excitation induces a strong horizon- 
tal displacement on the surface. As a result, this source is 
well suited for measurement of the wave speeds of the shear 
modes propagating in an epicentral direction. This source is 
also useful for generating head waves whose detection by an 
off-epicentral sensor might be used to determine the wave 
speeds with higher accuracy. 

(8) Differences between the group and phase velocities 
of the signal should be considered when determining the 

wave speeds and the elastic moduli of an anisotropic solid 
from waveforms generated by a broadband, point excitation. 
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