
R. L. Weaver 
Department of Theoretical 

and Applied Mechanics, 
University of Illinois at Urbana-Champaign, 

Urbana, IL 61801 
Mem. ASME 

W. Sachse 

Kwang Yul Kim 
Mere. ASME 

Department of Theoretical 
and Applied Mechanics, 

Cornell University, 
Ithaca, NY 14853-1503 

Transient Elastic Waves in a 

Transversely Isotropic Plate 
The elastodynamic response of a thick plate, with the axis of  transverse isotropy 
normal to the plate surface, is calculated by double numerical inverse transforms, a 
method particularly well-suited for calculations of  responses in the near field of 
layered structures. Applications of these calculations include point-source/point- 
receiver ultrasonics, quantitative acoustic emission measurements, and seismology. 
The singularities of the integrand are eliminated by the introduction of  a small, but 
nonzero, imaginary part to the frequency. We discuss issues of numerical efficiency 
and accuracy in the evaluation of the resulting integrals. The method can be general- 
ized to calculate the responses in materials of  more general symmetry, in viscoelastic 
materials and to include the effects of  finite aperture sources and receivers. The 
calculated responses are compared to those measured in a single crystal specimen 
of zinc. 

1 Introduction 

Ultrasonic measurements which rely on elastic waves propa- 
gating through a material can provide an ideal means for de- 
termining the macroscopic properties of the material or for de- 
tecting flaws and inhomogeneities. The focus of much research 
over the past decade has been on the development of quantita- 
tive active ultrasonic and passive acoustic emission (AE) tech- 
niques. The use of ultrasound for nondestructive materials eval- 
uation is especially appealing because of the direct connection 
between the characteristics of the wave propagation and the 
mechanical properties of a material. In contrast, passive AE 
techniques are attractive because they are able to monitor in 
situ the integrity of a large structure and to provide a means of 
investigating details of dynamic failure processes in materials. 

The theory of quantitative acoustic emission represents AE 
signals as spatial and temporal convolutions between the un- 
known source functions and the elastic wave Green's functions 
of the specimen. Recovery of the source function, which charac- 
terizes a source of emissio n, is possible only if the appropriate 
components of a specimen's elastic wave Green's function are 
known. The theory of transient wave propagation in bounded 
isotropic materials is now well established and has been used 
for the characterization of AE sources in such materials 
(Scruby, 1985; Kim et al., 1989). This approach has formed 
the basis of quantitative AE analysis in which the waveforms 
detected by well-characterized receivers are processed to re- 
cover the characteristics of the source, that is, its type, orienta- 
tion, and time-dependence. Similar applications in anisotropic 
materials have not yet been demonstrated, owing in part to the 
less well-developed theory for such materials. While the theory 
of harmonic wave propagation in unbounded elastic anisotropic 
media in well understood, cf. Synge (1957), Buchwald (1959), 
and Musgrave (1970), this is not the case for transient signals. 

A recent advance for obtaining ultrasonic waveform data in 
materials has been the development of the point-source/point- 
receiver (PS/PR) technique (Sachse and Kim, 1986, 1987a, 
1987b; Sachse et al., 1990). The technique employs small- 
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aperture sources and receivers and uses knowledge of the wave 
propagation to interpret the detected ultrasonic signals. The 
method exhibits a number of distinct advantages over conven- 
tional, plane-wave ultrasonic measurements. Specimen prepara- 
tion requirements are reduced and broadband excitations are 
easily realizable. Except in special cases, a point source gener- 
ates both longitudinal and shear waves in a specimen, therefore 
information about each of these wave modes can be extracted 
from a waveform. Further, since PS/PR signals are simultane- 
Ously propagated in a wide range of directions in a specimen, 
one can easily determine the direction dependence of the propa- 
gation speeds and attenuations of various wave modes. Recent 
application of such measurements to characterize anisotropic 
materials has focused on inverting ultrasonic group velocities, 
obtained from pulse arrival time data in signals that have propa- 
gated in nonprincipal directions in an uncut specimen, to obtain 
the matrix of elastic stiffness of the specimen material (Cas- 
tagnede et al., 1991; Every et al., 1991; Every et al., 1990; Niu, 
1992). 

A more detailed analysis of the waveforms, and, in particular, 
their evolving amplitudes and shapes, however, requires that 
the signals be detected by a sensor of known transfer character- 
istics and interpreted with an understanding of the propagation 
of transient elastic waves in a bounded specimen. Such measure- 
ments and signal analysis can form the basis of an absolute, 
quantitative materials characterization technique in specimens 
of isotropic materials (Weaver et al., 1989). The same proce- 
dures should in principle also be applicable for waves in 
bounded, anisotropic materials, but this has not yet been demon- 
strated. 

Essential to the development of active and passive quantita- 
tive techniques in anisotropic materials is the development of 
an understanding of the propagation of transient elastic waves 
in bounded media. This would provide a rational basis for pro- 
cessing and interpreting ultrasonic signals to recover the charac- 
teristics of a source of emission or to determine the propagation 
characteristics of the material. Preliminary work has shown that 
the measured dynamic Green's functions in a plate-like speci- 
men of an anisotropic material differ significantly from those 
in isotropic materials (Kim et al., 1993a). A theoretical basis for 
calculating the transient elastic waves in a bounded anisotropic 
material is of great fundamental as well as practical importance. 
Here we take the first step, that is, the development of a method 
for the calculation of such waveforms in transversely isotropic 
plates. The method promises to be readily extendable to plates 
of more arbitrary anisotropy and viscous properties. 
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2 Eiastodynamics of Thick Plates 
The calculation of elastodynamic responses in thick plates is 

a generalization of " L a m b ' s "  problem, in which the response 
of an isotropic half-space or plate to a concentrated transient 
surface load may be represented as a problem of solving the 
quiescent initial condition partial differential equation 

02u~ 
•ij, j = P O t  2 , ( 1 )  

where the stress tensor field is 

a o = k6ouk.~ + # ( u i j  + uj,t) (2) 

and traction boundary conditions are applied at the free and 
loaded surfaces, and traction on the other surfaces equal to the 
applied loads. For the case of a load F ( t )  concentrated at a 
point x = y = 0, the traction on the loaded surface at z = h is 

t~ = aun J = F i ( t ) 6 ( x ) 6 ( y )  at z = h. (3) 

These equations may be treated by finite difference algo- 
rithms (see, for example, Chang and Sun (1988) or Wu and 
Kuo (1990)) in which all derivatives with respect to time and 
space are replaced with finite difference equivalents and the 
resulting difference equations iterated in time. The method, in 
essence, numerically solves differential equations in all spatial 
coordinates and in time. For systems which lack translation 
invariance in x and y this may be the most efficient procedure. 

For plates with translation invariance, however, it may be 
expected that the integral transform method, with attendant ana- 
lytical solution of the differential equation in z, is more efficient. 
This is the approach taken by most researchers. The invariance 
of the plate under translations in time and in the coordinates x 
and y make it convenient to proceed by means of a Fourier, or 
Laplace, transform in time and a double Fourier transform in 
space. The result is a set of coupled, ordinary differential equa- 
tions in z for the transformed fields u~ or their associated dis= 
placement potentials. In homogeneous materials, the ODE's are 
constant coefficient and therefore solvable in terms of linear 
combinations of exponentials in z. The coefficients in the linear 
combinations are determinable from the transformed boundary 
conditions. The solution is the triply transformed response of 
the plate. 

Ben-Mehahem and Sena (1990) have obtained, by a variant 
of the above procedure, the transformed response of a trans- 
versely isotropic half-space to an arbitrary point source. Their 
interest is primarily in the frequency domain response and so 
they needed to perform only a single inverse transform. They 
did this analytically, at asymptotically high frequencies. 

Because we are concerned with arbitrary frequencies, and 
with the time domain, we are faced with the need for exact 
inversion of all transforms. At least three different methods for 
that inversion exist. One is Generalized Ray Theory (Pat  and 
Gajewski, 1977) in which the response is written as a superpo- 
sition of expressions corresponding to rays from the source to 
the receiver, each associated with a definite arrival time. An- 
other method expresses the response as a sum of inverse integral 
transforms associated with individual branches of the dispersive 
guided waves (Weaver and Pat,  1982a; Vasudevan and Mal, 
1985). Felsen (1985) has suggested a hybrid method in which 
the response is written as a sum of a finite number of rays and 
a remainder which is approximated as a truncated sum of normal 
modes. A third method attempts a completely numerical multi- 
ple inverse integral transform (Bouchon and Aki, 1977; Weaver 
et al., 1989; Lih and Mal, 1992). 

Generalized ray theory in which the double transform is in- 
verted by the Cagniard method has been successfully applied 
to the calculation of the transient responses of isotropic half- 
spaces (Pekeris, 1955; Knopoff, 1958), and transversely iso- 
tropic half-spaces (Payton, 1983). Ray theory has also been 

successfully applied to the calculation of near-field responses 
in isotropic plates (Ceranoglu and Pat,  1981; Hsu, 1985) with 
numerous applications to acoustic emission source characteriza- 
tion and to point-source/point-receiver ultrasonics measure- 
ments, e.g., Scruby (1985) and Sachse and Kim (1986). Gener- 
alized ray theory (Pat  and Gajewski, 1977) expresses responses 
as superpositions of integrals associated with rays traveling 
from the source to the receiver, either directly or after one or 
more surface reflections, each with a well-defined arrival time. 
At finite time there are a finite number of rays that contribute. 
In practice, however, the number of rays that contribute may 
be very large. The calculations are therefore cumbersome unless 
interest is confined to the very earliest times. Ray theory is 
generally not applicable to viscoelastic media (Weaver et al., 
1989). 

As Payton (1983) has demonstrated, responses in anisotropic 
media are, in principle, also decomposable into a sum of gener- 
alized rays. The calculations, however, can become very diffi- 
cult to carry out because of the complexity of the folded group 
velocity surfaces. No one to our knowledge has attempted to 
carry out such calculations except for the simplest of anisotropic 
media: that of a transversely isotropic half-space for which the 
symmetry axis is normal to the surface (Payton, 1983) and that 
of an unbounded medium of more arbitrary symmetry (Every 
and Kim, 1993). The response of an unbounded medium and 
a half-space to a transient line load has been calculated by 
Nayfeh and Kim (1993). Van der Hijden (1987) has discussed 
the necessary procedures for a ray calculation in the general 
case of an arbitrarily layered anisotropic medium. Bedding and 
Willis (1980) have discussed and calculated high-frequency 
wavefront approximations which are valid near ray arrival 
times. 

Owing to the mnltitude of rays needed, ray theory is not 
amenable to calculation of plate responses in the far field. Nev- 
ertheless, responses in an anisotropic plate at receiver positions 
far from a source have been calculated by means of one analyti- 
cal inverse transform done with the aid of the Cauchy residue 
theorem followed by a numerical inverse transform of the re- 
maining integral (Weaver and Pat, 1982a, 1982b; Vasudevan 
and Mal, 1985; Santosa and Pat,  1989). The use of the Cauchy 
residue theorem requires the location of the poles corresponding 
to the Rayleigh-Lamb-like waves of the plate and this can be 
conceptually complicated, especially in media with arbitrary 
layering, viscous properties and/or elastic symmetries (Nayfeh 
and Chimenti, 1989). Furthermore, a large number of pole loca- 
tions are required for the calculation of responses with fine time 
resolution. This suggests that the method is not appropriate for 
high-frequency or large bandwidth applications. 

A number of researchers (Weaver et al., 1990; Xu and Mal, 
1985; Lih and Mal, 1992; Kundu and Mal, 1985; Bouchon and 
Aki, 1977; Duprey, 1993) have discussed and implemented 
schemes in which the location of the Rayleigh-Lamb poles is 
unnecessary. In these studies, all the inversions are carried out 
numerically. These integrations confront one with a need to 
write algorithms in which the contributions from the singulari- 
ties at the poles corresponding to the Rayleigh-Lamb waves are 
correctly evaluated. As Kundu and Mal (1985) discuss, there 
are a variety of techniques which have been employed to negoti- 
ate these poles. One may write an algorithm which recognizes 
the pole and evaluates the contribution from its vicinity by 
taking a numerical Cauchy principal value and supplementing 
it with an analytic expression for a half residue. This could be 
cumbersome. Mal and co-workers (Xu and Mal, 1985; Kundu 
and Mal, 1985; Lih and Mal, 1992) have proceeded by introduc- 
ing dissipation into their materials. Except for the strong pole 
at low wave number and frequency, this moves the poles off 
the line of numerical integration. It also disperses the sharp ray 
arrivals. Weaver et al. (1989) and Duprey ( 1993 ) have followed 
the method suggested by, amongst others, Bouchon and Aki 
(1977), of letting their frequency gain a small constant imagi- 
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l z 

Fig. 1 The geometry of the problem 

nary part, hence w = w~ = t6 where 6 is small and positive. 
After the calculation is completed, the effect of 6 is removed 
by multiplying responses by exp { 6t }. This method has the 
presumed disadvantage of amplifying numerical noise at late 
times. On the other hand it does preserve the sharp wave arrivals 
characteristic of nondissipative materials. It has been demon- 
strated (Weaver et al., 1989; Duprey, 1993) that this approach 
may readily be extended to the viscoelastic case and to the use 
of finite aperture receivers (Duprey, 1993). Because of the 
presumed poor accuracy at late times the method is probably 
most appropriate for calculation of the responses at early times 
and consequently for short source/receiver separations. It prom- 
ises also to be extendable to the case of arbitrary anisotropy 
with some additional computational effort. Thus it is ideally 
suited for calculation of the waveforms expected in ultrasonic 
point-source/point-receiver measurements and in near-field 
acoustic emission signals. It is this procedure which will be 
followed here. 

In the following section we derive analytic expressions for the 
transformed displacement response to a step point load acting on 
the surface of a transversely isotropic plate and discuss the 
extensions necessary for the treatment of other sources. The 
numerical inversion of the transform by the method outlined 
above is discussed in Section 3. In Section 4 we present compar- 
isons of the numerically calculated responses with calculations 
by means of Generalized Rays (assuming isotropic symmetry), 
and with experimentally determined responses in a single crystal 
plate specimen of zinc. We conclude with a discussion of the 
prospects for extending this method to materials of more arbi- 
trary anisotropy. 

3 Double Transform of Plate Response 
Consider the slab of thickness 2h = H pictured in Fig. 1. We 

imagine an excitation consisting of a point unit vertical step 
force F ( t )  = H ( t ) ~  acting on an initially quiescent system, 
though generalization to other time dependencies, loading posi- 
tions, directions and distributions is not difficult. The formal 
elastodynamic boundary value, initial value problem seeks the 
solution u ( r ,  t) of the following partial differential equation: 

02u~ 
CoklUk,t J = p Ot 2 (4) 

with quiescent initial conditions and with boundary conditions 
given by 

C3jktUk,l=Ffl~(X)8(y) at Z= +h (5) 

and 

C3jk~U~.t = 0 at z = - h .  

Upon performing a single temporal and a double spatial, Fourier 
transform on u 

U, (k~, k~, ~, z) 

= f f f u , ( x , y , z , t )  exp{ t ( I c~x+k ,y -~ , t ) ldxdyd t ,  (6) 

we find that the PDE reduces to a set of coupled ordinary 
differential equations. When the material is transversely iso- 
tropic with its axis of symmetry oriented normal to the plate 
surface, we may, without loss of generality, assume that ky 
vanishes, and construct the following ODE's, where a prime 
signifies a derivative with respect to the z-coordinate 

-Cllllk2U1 + c1313U~1 ' - bk[ct133 + c133t ]U~ = - p t . o 2 U i  

-c3131k2U3 + c3333U~ - bk[c3131 + c3311]U~ = - f f o j 2 U 3 ,  (7) 

in which U2 decouples. General symmetry constraints amongst 
the elastic moduli tell us further that e1313 -~ C3131 .-~ C3113 -.~ C1331 
and C1133 '~ C3311. 

If one seeks solutions of the form Ui exp(~az),  one recovers 
an algebraic problem: 

[QI{U} = {0} or, 

pw2 -- ellllk2 -- Cl3,30l k0l(C1133-{-C1331 ) ] f U l l  
ko/(CI133 + C1331) P 0")2 -- c3131k2 - c3333°~2] l Us  

: {Oo}, 

for which the characteristic equation det [Q] = 0 is, at fixed 
w and k, a quadratic for ot 2. We label the two distinct solutions 
of this quadratic by the subscript a which takes on the values 
of 1 or 2. Each value of a is associated with two related solu- 
tions, _+a°, each of which is associated with an eigenvector, 
labeled as { U~ }. Rather than labeling the related solutions by 
the sign of o~,, it is convenient instead to characterize the solu- 
tions as symmetric (even) and antisymmetric (odd). One there- 
fore takes linear combinations of the solutions associated with 
±a,, and forms the solutions 

{ u"'e(z) } = ½[{ U~ } exp(raaz) + { U ~- } e x p ( - t a , z ) ]  

f --tkolo(Cl,33 • c1331 ) sin c~,,z ] 
'{L (P/x'12 -- Cl l l lk2  - c1313°/a2) COS OlaZ J ~ ( 9 )  

and 

1 
{ U"'°(z)} = ~ [{ U~. } exp(tot~z) - { U"_ } exp ( -u~ , z ) ]  

= {  LNOla(CII33"IPCI331)cOSOlaz } 2  2 2 • ( 1 0 )  

( p W  -- Cl l l lk  --  C13|30/a) s i n  a.z 

The general solution of the ordinary differential equation (Eq. 
(7))  is an arbitrary linear combination of {Ut'°(z)},  
{ U~'e(z) }, { U2'°(z) }, and { u2'e(z) }. That is 

{ U }  = ~..~.Aa'°{U"'~}, (11)  

where the sums are over a = 1, 2 and a = e, o. Invocation of 
the boundary conditions allows one to determine the coefficients 
A of the linear combination. The transformed boundary condi- 
tions are, at the upper surface, 

F 
c3311 ( -  tk) Ul + c333sU~ I~=+h = - -  

/,0J 

and 

ct3J3U[ - tkc1313U3]~=÷h = 0. (12) 

At the lower surface of the plate (z = - h )  both these expres- 
sions vanish. 

In principle, the resulting system of equations for the A's  is 
4 × 4, however the use of even and odd solutions rather than 

Journal of Applied Mechanics JUNE 1996, Vol. 63 / 339 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/63/2/337/5880082/337_1.pdf by C
ornell U

niversity user on 20 February 2022



upgoing and downgoing solutions uncouples this 4 × 4 system 
to give two distinct 2 × 2 systems. 

For the even modes one finds 

Aae[c3311(-kZoLa)(Cl133 + c1331 ) sin aah 

- -  OLaC3333(P~ .Q 2 - -  Ctlllk 2 - -  C 1 3 1 3 ~ a  2 )  sin oLh] = ~ (13) 
2Joe 

and 

Lk ~ Aae[c13130Z2a(Ct133 + c1331) c o s  olah 

- C1331(0c0 2 - Cl111 k2 -- Cl313ffa 2) COS o~h] = 0, (14) 

where the sums are over a = 1, 2. For the odd modes one finds 

Aa°[c3311(k201a)(cl133 + c133t ) c o s  oLah 

+ O/aC3333(/0C.U 2 -- Cl l l l  k2 -- C13130~) COS ogh] • ~ ( 1 5 )  
2~w 

and 

ck ~ Aa°[c1313012a(Cx133 + C1331 ) sin aah 

+ C1331(flC0 2 -- C l l l l k  2 - c13130/a 2) sin ah] = 0. (16) 

For a fixed value of w and k one may determine the two thick- 
ness direction wave numbers ao by solving the quadratic det 
[Q] = 0, determine the associated transformed displacement 
fields from Eqs. (9) - ( 11 ), and determine the coefficients A 
from the 2 × 2 systems of Eqs. ( 1 3 ) - ( 1 6 ) .  This completes 
the determination of the transformed displacement field re- 
sponses. At z = - h ,  the transformed normal response is 

f3lz=_ h = ~ Aae(Dtx) 2 - Cll l l  k2 - Ct313Ota 2) COS a~,h 

- ~ A " ° ( p w  2 - Cll l l  k2 - -  C13130~a 2 )  sin a~h. (17) 

At z = +h, the transformed response is 

U3lz=+h = ~ Aae(lo~2 -- C1111 k2 -- Cl313Oga 2) COS ~a h 

+ ~Aa° (p~ .d  2 -- CIll l  k2 -- Cl313OZa 2) s i n  a . h .  ( 1 8 )  

The response at a receiver location (x, y),  located at a dis- 
tance r = ( ~ x  a + y2) from the point of application of the force 
is then given by the inverse triple transform: 

u3(x, y, z = ±h, t) = f f f U3(k~, ky, w, z = ±h)  

× exp{-L(k~x + kyy - wt)}dk~dkydw. (19) 

Using the assumed transverse isotropy, one may recognize that 
U3 is a function only of the magnitude of k and hence one can 
perform the integration over the direction of k analytically. One 
is left with the following inverse double Fourier-Hankel trans- 
form, 

ua(r,z  = ±h,  t ) =  (27r) -2 f ~  f :  U3(k, W,Z = ±h)  

× Jo(kr) exp(~wt)kdkdw, (20) 

where J0 is the Bessel function of first kind, zeroth order. Except 
for the relatively greater complexity of the expressions for U, 
this double inverse transform is identical to that obtained for 
the response of an isotropic slab (Vasudevan and Mal, 1985; 
Weaver and Sachse, 1988; Weaver et al., 1989). 

The above analysis has described the method for the genera- 
tion of doubly transformed displacement responses to normal 
surface loads. The method is, however, of greater generality 
and may be used to calculate responses to more arbitrary load- 
ings. The right side of Eqs. ( 13 ) - (16) are essentially the trans- 

formed applied surface tractions, which could be generalized to 
loads other than normal loads. Buried sources would be slightly 
more complicated, the ODE (Eq. (7))  acquiring inhomoge- 
neous forces, functions of z. Their solution would not, however, 
be difficult. Nayfeh and Kim (1993) have discussed doubly 
transformed responses to line loads in anisotropic media. Van 
der Hijden (1987) has formulated the procedures for the calcu- 
lations of the transformed responses to point loads in arbitrarily 
layered anisotropic media. 

The response to some of these other loadings is implicit in 
the present calculation. For example, the displacement response 
to a pair of horizontal double forces may be obtained as de- 
scribed in the following paragraph. 

The displacement response in the radial direction to a vertical 
impulse may be shown to be 

ur(r ,z  = ±h,  t) = - / , ( 2 7 r )  -2 f f U,(k, w , z  = ±h)  

× Jl(kr)  exp(~wt)kdkdw, (21) 

where U1 is obtained from Eqs. (9) - (16) as was U3. Symmetry 
arguments may be used to show that the response in the 0 
direction vanishes. The in-plane (two-dimensional) divergence 
of the in-plane displacement field may then be formally con- 
structed from 

 .rOr  = f f  U l ( k  , OJ, Z = ±h) 

× (1/r)d[rJ l (kr)] /dr  exp(cwt)kdkd~o (22) 

Ul(k, aJ, z = ± h )  

× Jo(kr) exp(Lcot)k2dkdco. (23) 

While measurements of in-plane divergence responses to nor- 
mal surface loads are rarely, if ever, made, the reciprocal mea- 
surement of a normal surface displacement response to an in- 
plane dilation precisely corresponds to a common case in which 
laser generated thermoelastic sources generate ultrasound which 
is detected by sensors of normal surface motion. Thus, by reci- 
procity, Eq. (23) corresponds to an important PS/PR testing 
configuration. 

The effect of a finite aperture receiver may be incorporated 
into Eqs. (20) or (23) by the insertion of a factor corresponding 
to the Hankel transform of the receiver sensitivity into the integ- 
rand. This has been demonstrated for the isotropic case (Duprey, 
1993). 

The principal interest of the present communication is in a 
proposed method for the evaluation of integrals such as those 
appearing in Eqs. (20), (21), or (23). We therefore do not 
concern ourselves further with the calculation of the integrand 
in the general case, but only With the integral. We choose to 
address Eq. (20). 

Evaluation of one of the two integrals appearing in Eqs. (20), 
(21), or (23) may, as discussed in the Introduction, be effected 
by contour integration and the Cauchy residue theorem. That 
procedure requires the location of the poles, the roots of the 
dispersion relations for the guided waves of the plate. Alterna- 
tively one might attempt an algebraically cumbersome semi- 
analytical evaluation of the response by writing it as a ray sum. 
See, for example, the work of Knopoff (1958) or Ceranoglu 
and Pao (1981) for discussions of this approach in an isotropic 
plate and Van der Hjiden (1987) for an anisotropic plate. If 
u3(r, z = ±h,  t) were expanded in powers of exp(~ah) and 
each term in the series identified with a multiply reflected wave 
in the standard fashion (Knopoff, 1958; Ceranoglu and Pao, 
1981 ), one could then truncate the series (which would corre- 
spond to the inclusion of a finite number of rays) and integrate 
the result. The resulting integrand would lack poles but would 
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include branch points. It is not clear whether this procedure 
would be more computationally efficient than the one followed 
here. It would most certainly be more complicated analytically. 

Here we follow the algebraically less cumbersome, but com- 
putationally more demanding numerical evaluation of the dou- 
ble integral expressed by Eq. (20). We judge it expedient to 
carry out the integration in w by means of an FFT algorithm. 
The numerical integration may be done in a variety of ways. It 
is most important to recognize that the k-integration along the 
real k-axis passes arbitrarily close to a finite number of discrete 
poles at the real roots k (w)  of the guided mode dispersion 
relation for the plate. A reliable numerical algorithm for the 
navigation of these poles is, in principle, possible. However, in 
the spirit of constructing an algebraically simple, albeit compu- 
tationally intensive method, it is arguably more appropriate to 
avoid the need for such programming. Mal and co-workers (Xu 
and Mal, 1985; Kundu and Mal, 1985; Lih and Mal, 1992) have 
treated the difficulty by including dissipation in their constitu- 
tive relations CUk~(W ). For real, nonzero w this moves the poles 
off the real k-axis. The consequent high attenuations at high 
frequencies have also limited the high frequencies in their re- 
sponses, thereby allowing truncation of the inverse Fourier 
transform at moderately low frequencies, By also limiting the 
low-frequency content of their excitations, the pole at co = 0 is 
eliminated. 

In this paper we follow an alternative scheme in which the 
Fourier transform is generalized by co --, co~ - L6 where 6 is 
small and positive. While 6 may, if desired, be allowed to have 
a dependence upon con as one would if one were to make one's 
excursions into the complex plane only in the vicinity of the 
poles, the choice of a constant 6 preserves the applicability of 
the FFT algorithm for the final a~ inversion. With a constant, 
positive 6, it is a simple matter to show that Eq. (20) is exactly 
equivalent to 

u3(r, z = _+h, t) = exp(6t)(27r) -2 

f+ f: × U3(k, cot - c6, z = ±h)  

× Jo(kr) exp(cco,.t)kdkdwr. (24) 

The integrand is a nonsingular function of the real variables ~,. 
and k. It may now be integrated numerically without ambiguity. 

In the absence of the factor exp(6t), Eq. (24) gives the 
response of a dissipative material with an arbitrary and physi- 
cally unlikely form of damping. If one wished to apply Eq. 
(24) to the case of a dissipative and dispersive material, one 
should employ complex frequency-dependent wavespeeds in 
the evaluation of u3, as has been discussed by Weaver et al. 
(1989) for isotropic materials. 

4 Double Numerical Inverse Transform 

The computational burden associated with the performance 
of the double integral appearing in Eq. (24) is not prohibitive. 
Issues of efficiency are therefore not critical. Inasmuch, how- 
ever, as we imagine ultimate extension of the technique to the 
triple integrals required for responses in slabs of arbitrary elastic 
symmetry, we do expect issues of efficiency to be ultimately 
relevant. We therefore consider them here. 

The integration of Eq. (24) is performed first with respect to 
k at fixed cot, and then with respect to cot by an FFT algorithm. 
Upon choosing a temporal resolution 2xt, and a range in time 
T, one concludes that the frequency resolution 2xco can be no 
more coarse than 2xw = 27r/T. We choose Act = 27r/uT with 
u _> 1 chosen to be an integer power of 2. The maximum 
unaliased frequency is COm,x = 7r/2xt. Thus the number of inde- 
pendent frequencies for which the inverse Hankel transform 
must be evaluated and summed for the inverse Fourier transform 
is uN/2. For ease in implementing the FFT, we choose the 

0.10 

0.05 

o_ 0 . 0 0  

~ -0.05 

. . . .  . . . .  [ . . . . . . . .  i , . . 

--6 - 0.50 
--6 = 0.0625 

- 0 . I 0  . . . . . . . . . . . . . . . .  i , , , ,  
0 10 2 0  3 0  4 0  5 0  

N o n - d i m e n s i o n a l  W a v e n u m b e r ,  k h  

Fig. 2 The behavior of ~{kUs} versus k at ~ = 3 5 . 5 4 ,  z = - h  for a small 
( 0 . 0 6 2 5 ,  l i g h t  l i n e }  and large (0.5, heavy line) values of a. The units are 
those described at the end of Section 4 .  

number of points in the time record, N = T/ZXt, to be a power 
of 2. 

It is important when evaluating the integration with respect 
to k to anticipate the rate at which the integrand is likely to 
vary and the consequent requirements on the spacing £xk in the 
k-integration. The integrand of Eq. (21) has variation with k 
due to more than one cause. At moderate distances, when r is 
less than a few times the thickness 2h, the oscillation resulting 
from the factor J0 is fairly slow so that the variations in U are 
dominated by other causes. For large r, it is evident that the 
required spacings in k will be constrained due to the factor J0 
by an inequality such as ~k  < 1/r. 

The .poles in U at the roots of the dispersion relation also 
contribute to rapid variations in the integrand. For a small imagi- 
nary frequency shift 6, the poles in U are very sharp, leading 
to the requirement that the spacing ~k  in the k-integration be 
small. Thus there is an advantage to choosing large 6. On the 
other hand, a large 6 will lead to large numerical noise at late 
times. Hence, there is some optimal choice for 6. The pole for 
branch " b "  is located at k b ( 6 0 )  ~--o k b ( W , . )  - -  k'b(wr)L6 which 
lies a distance 6[k~(w,.)[ = 6/[vg I from the real k-axis. Here 
Vg is the group velocity of the branch at frequency wr. Thus, 
one may anticipate that the requirement on Ak for a correct 
evaluation of the integral in the vicinity of the pole is something 
like Ak < 6/v where v is the group velocity of a typical guided 
wave mode. 

One also anticipates oscillatory variations in U(k)  at fixed 
a Jr related to the presence of factors such as exp { ~a~(k, o~)/h } 
in the expressions for U. At most points in k this factor varies 
with k on a scale of 1/h. The exponent is, however, especially 
sensitive to variations in k near the cutoff values of k where 
d a , / d k  diverges with a square root singularity. After some alge- 
bra, one concludes with a constraint of the form &k < (h) -~ (6/ 
cot) 1/2 which is important only in the vicinity of those few 
points for which dcea/dk diverges. In isotropic materials, these 
are the points where o/a vanishes. In an arbitrary material, these 
are points with group velocity in the (x-y)-plane; one would 
therefore anticipate that they are important only in the case that 
source and receiver are on the same side of the plate. 

In Fig. 2 is a plot of ~(kU3) versus k for different values of 
6. Note the existence of some of the anticipated scales of varia- 
tion with k. The sharp behavior near the poles is evident in the 
limit of small 6. At larger 6 there remains a smooth variation 
on the scale of 1/h, comparable to the spacing between the 
poles. As Fig. 3 illustrates, the rapid variations versus k, antici- 
pated to occur at the points where dcea/dk diverges, are observed 
at kh ~ 22 and ~45. 

In order to estimate an optimal value for the imaginary fre- 
quency shift 6 we need to determine the value of 6 for which 
a large Ak is tolerable because maximal zXk will correspond to 
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Fig. 3 The behavior of ~{kUa} versus k at ~ = 35.54, 6 = 0.0025 and for 
z = +h. Note the surface acoustic wave pole at k h  ~ 52 and the slow 
convergence as k ~ oo. 

a minimal computation time. As described above, we expect 
Ak to be chiefly constrained by 6/v. This reasoning would lead 
one to choose large values of 6. Such large values will lead, 
however, to severe constraints on integration accuracy, because 
errors will be multiplied by exp { 6T}.  If we seek an absolute 
error in the computed displacements u which is less than e, then 
the absolute error in the double integral appearing in Eq. (24)  
at time Tmust be less than e(27r) 2 e x p ( -  6T) .  This corresponds 
to an absolute error in each point ~ of the inverse Hankel 
transform 

v (w)  = f ~  U3(k, w, - ~6, z = ±h)Jo(kr )kdk ,  (25) 

which must be less than e(27r)2 e x p ( -  6 T ) / w  . . . .  If the integral 
appearing in Eq. (25) is evaluated using Simpson's rule (Press, 
et al., 1989), it has a discretization error which scales with the 
fourth power of ( A k ) ,  A ( A k / [  6/v ] ) 4 where A is an unimpor- 
tant scaling factor. Assuming that the discretization error domi- 
nates the error in evaluations of Eq. (25), one concludes that 
Ak required for the specified accuracy is determined from 

A [  Ak ~4 < e(27r)2 e x p ( - 6 T )  (26) 

l [~/v] J ~m~ 

By solving Eq. (.26) for Ak and differentiating with respect to 
6, the maximal value for Ak is then found at 6 = 4/T.  

As this argument depends upon the assumption that 6 is small, 
the conclusion follows only for sufficiently large T. For moder- 
ate r and T, Ak is chiefly constrained by 1 Ih.  Thus the optimal 
value for 6 is merely whatever 6 makes the constraints equal, 
that is, l l h  ~ 6Iv. Unfortunately this argument is not quantita- 
tively precise and in practice we find the optimal value of 6 
operationally. We find optimal values of 6 of the order of 2/T.  
Complete theoretical understanding of these issues awaits fur- 
ther work. 

The integral appearing in Eq. (25) is evaluated by a succes- 
sion of calls to a double precision complex Simpson's rule 
integrator adapted from the routine QSIMP in Numerical Reci- 
pes (Press et al., 1986) with an relative error bound of one part 
in 106. A more sophisticated Romberg integration scheme was 
not found to increase efficiency. 

Mal and co-workers (Xu and Mal, 1985; Lih and Mal, 1992) 
have developed an integration method for integrals such as that 
appearing in Eq. (25) in which ~xk varies with k adaptively and 
in which the need for the constraint Ak < l l r  is not present 
because the integrand without the factor J0 is fit locally to a 
polynomial in k and the local integration of the oscillatory factor 
times the polynomial can be done exactly. This procedure is 
well suited for large distances r for which the chief constraint 

on Ak would be I / r ,  but it is less indicated in the present case 
in which r is small. The adaptive variation method is not pursued 
here, but it is arguably more efficient than the use of uniform 
spacings even at small r. As Fig. 2 illustrates, the scale over 
which U varies does vary with k, most notably in the vicinity 
of the points where Oa/Ok diverges. 

The integral appearing in Eq. (25) runs to infinite k. Evalua- 
tion of this improper integral is, therefore, problematic. As seen 
from Fig. 2, however, the integrand for the case that the receiver 
is on the side opposite from the source converges rapidly for k 
greater than some characteristic value of the order of w,/c  . . . .  
where C~,w is the speed of the surface wave. A numerical evalua- 
tion of this integral may then safely be truncated at a value of 
k equal to km,x somewhat larger than Wr/C~,w. 

It is clear from Fig. 3, that on the top surface, when k is 
equal to wr/Csaw, there is a large peak, corresponding to the 
surface wave pole. For k larger than wr/C~,w the integrand as- 
ymptotes to a constant value. Therefore a truncation is not ap- 
propriate in this case. The integration converges only by virtue 
of the gently diminishing oscillations in the Bessel function J0. 
At r = 0 the integral does not converge at all, corresponding 
to the 1/r  singularity at a point force on a half space. In order 
to compute this integral numerically we have chosen to evaluate 
the integral from the point km~ to ~ by means of an asymptotic 
expression. 

Consider the integral I = J~ A ( k ) J o ( k r ) d k  where A ( k )  = 
kUa(k) is close to its asympt~'ic value for all k -> k . . . .  We 
expand the Bessel function asymptotically to obtain 

(2/Trr) t/2 f A(k) (k) -Z/2[cos  (kr - 7r/4) + sin (kr  - 7r/4)/ 

8kr - 9 cos (kr  - 7r/4)/128k2r2]dk. (27) 

By defining the quantities 

k a(~)  =- A ( k )  a (~)  
; ~- kmax , - ~ - ,  b ( ; )  -= ; , 

c (~)  --- a (~)  and x -= k~axr >> 1, (28) 

Eq. (24) can be rewritten to obtain 

kmax (~x ) l / 2  f l ~ a ( ~ )  COS (~X - 7r/4) 

+ b(~) sin (~x - 7r/4)/ 

8x - 9c(~)  cos (~x - 7r14)/128x2]d~. (29) 

This integral can now be evaluated for asymptotically large 
values of x. We find 

( 2 )  .'2 
I ~ km,x ~x I - a ( 1 )  sin (x - 7r/4)/x 

- a ' ( 1 )  cos (x - 7r14)lx 2 + a"(1)  sin (x - 7r14)/x 3 

+ ( ~ ) { b ( 1 ) c o s ( x - T r / 4 ) / x  2 

- b ' ( l )  sin (x - 7r/4)/x 3 } 

(91 + T ~  c(1)  sin (x - ~r14)lx3], (30) 

where the primes indicate derivatives with respect to ~. This 
expression is added to the Simpson's rule evaluation of the 
integral from zero to km,x. Its accuracy is checked by investigat- 
ing the invariance of the final result under changes of kmax. 
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The response u(t) is given by an inverse Fourier transform 
on v. That is 

u(t) = exp(6t) v(w~ - 56)exp{ 5tot}dto 

:2fft[ex4p~(~6t) f : v ( t o ' - ' 6 ) e x p { c w t ' d t o ]  7r (31) 

where 9~ indicates the real part of  the expression, We evaluate 
the integral, however, by means of  a discrete sum on v., where 
v. is defined by 

v,, = v((n + l / 2 ) A t o  - 56) for 

. . . .  ( u ~ N - 1 ~ .  (32) n = 0 , 1 , 2  
\ z  / 

The final determination of u is found in the form 

[ u(t) l,=m~, = 2 ~  exp{6t  + 5zXwtl2} 4--.- ~ 

ex ( 257rnm ] to ] x Y~ v,, P]-'-'ZZ---, ~ f ( , )  / , (33) 
L my j I , , = ( , , + , z ~ J  

where f is a low-pass filter function that brings the summand 
smoothly to zero at tomax in order to avoid Gibbs oscillations at 
the ray arrival times. The sum over n is from zero to uN/2 - 
1. By padding the array v with an additional uN/2 zeros, how- 
ever, and extending the sum to uN terms, the sum becomes 
identical in form to that of  a discrete Fourier Transform. It may 
be computed efficiently by an FFT algorithm. 

The sum is a good approximation to the integral appearing 
Eq. (31) only if  the points of  the integrand are sufficiently 
closely sampled in the sum. If we insist that there be at least u 
points per cycle of the kernel exp { 5tot } of  the integrand, we 
conclude that Aw must be smaller than 27r/ut for all t of  interest, 
i.e., Ato = 27r/uT. This provides an alternative meaning for 
the computation parameter u, as the number of points summed 
in the inverse Fourier Transform per cycle of  its kernel. Only 
the first N elements of  the resulting uN element array u,, are 
reported, corresponding to times from zero to T. 

The parameter u ~ 1 permits trading accuracy and computa- 
tional burden. Large values for u corresponding to a fine resolu- 
tion in to imply a better approximation between the sum ap- 

Isotropic Plate: Step F z , Epicenter 
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Fig. 4 The displacement response at epicenter in an isotropic plate as 
calculated by the present method is indistinguishable from the explicit 
formula given by Knopoff (1958). The insert shows the difference be- 
tween these two approaches on an expanded scale. 
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Fig, 5 The response at a distance r = 2h from the source on the same 
side as the detector in an isotropic slab is calculated by the present 
method and by generalized rays. The difference is shown in the insert. 
Note in particular the significant Rayleigh wave arrival, 
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Fig. 6 Responses at several positions on the side of the plate opposite 
from the source. (a) Calculated responses. (b) Measured results. 
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Fig. 7 Computed and measured responses in zinc at r = H = 2h on the 
same side of the plate as the source. The measured waveform has been 
shifted horizontally by a constant (corresponding to the pre-trigger time) 
to bring the first arrival signals into coincidence and scaled vertically by 
a constant (corresponding to the source strength and charge amplifier 
gain) to bring the amplitude after the surface wave arrival into 
agreement. 

pearing in Eq. (30) and the integral appearing in Eq. (29). The 
total computational effort very nearly scales with u, however, 
and computations at large u can therefore be prohibitively slow. 
In the results we present below, u has been taken to equal 4. 
Larger values lead only to slight changes which are indistin- 
guishable on the plots presented here. On the other hand, u = 
1 leads to obvious errors, of the order of a couple of percent. 

The evaluation of U and the integration of U with respect to 
k was conducted with 16-byte complex arithmetic. The FFT 
was summed with 8-byte complex arithmetic. A unit step force 
(i.e., F = 1) was used and units such that h = p = c3333 = 1 
were used. Thus the resulting displacements are in units of F/  
c3333h and are given as a function of time in normalized time 
units of h/cL where cL is defined as the speed ~ p  of a 
longitudinal wave along the axis of symmetry through the plate 
thickness. Computational times varied with the desired accuracy 
and desired time resolution; typical calculations required a few 
minutes on a workstation. 

5 Results and Comparison With Experiment 
To investigate the accuracy of the present method we have 

calculated the response of an isotropic slab and numerically 
compared it to the response obtained by generalized ray theory. 
We have considered the case C,jk~ = X6ij6k~ + #(6~6j~ + 6it6jk) 

1 with X = 21z corresponding to a Poisson's ratio of ~ and a ratio 
of longitudinal to shear wave speeds of 2. Figure 4 shows the 
response at epicenter (z = - h ,  r = 0) calculated by the present 
scheme using parameters T = 8(h/cL) ,  6 = 2 /T ,  and u = 4. 
The results of a generalized ray calculation at epicenter (cf. 
Knopoff, 1958) in which the response is given by an explicit 
algebraic expression are superposed. As in our previous work 
(Weaver and Sachse, 1988; Weaver et al., 1989), the slight 
differences cannot be discerned on the scale of the plot. The 
difference between the calculations is shown in the inset in 
which it can be seen that, except neat" the ray arrival times at 
which the very high frequency limitations of the present tech- 
nique are most evident, typical errors are less than 10 5. As 
anticipated, they increase at later times. 

Results from the present calculation for a receiver on the 
same side (z = +h) as the source and at a distance of r = 2h 
= H are shown in Fig. 5, superposed upon the results of a 
generalized ray calculation calculated using the code developed 
by Hsu (1985). The maximum discrepancy is less than 10 5 
except in the vicinity of the arrival times. Much of the error 
has a characteristic time scale and appears nonstochastic, indi- 

cating that the discrepancies are not the result of round-off error 
or finite precision in the integrations, but rather the result of 
some small systematic error in the code. They are not removed 
by increasing the parameter u, nor by demanding that the k- 
integrations be carried out to an accuracy of one part in 10 7, 

nor do they change upon adjusting the nominally arbitrary pa- 
rameter kmax. 

We also apply the present algorithm to the case of a zinc 
single crystal plate whose elastic symmetry axis is aligned nor- 
mal to the surface. We choose the following values for the 
ratios of the elastic moduli: Cl111/C3333 : 2.6021, C1313/C3333 : 
0.6147, and C1133/C3333 ~- 0.8339. In Fig. 6 we show a set of 
responses at z = - h ,  calculated for a series of different source/ 
receiver separations. Results from measurements in zinc, re- 
ported elsewhere (Kim and Sachse, 1993), are also shown. The 
agreement is good, the differences at late times being ascribable 
to side wall reflections in the experiment and to low frequency 
rolloff in the ultrasonic receiver electronics. In particular one 
should note the strong (ideally infinite) response at the arrival 
of the focused conical point rays. The behavior of these curves 
has been discussed at length elsewhere (Kim and Sachse, 
1993). 

The computed and measured responses on the same side as 
the source (at z = +h) at a distance r = 2h are shown in Fig. 
7. Note in particular, the strong surface wave arrival in the 
computed waveform, at t = r/C~,w = 2.91 in units of h/cL or 
12.54/zs and also the conical point wave reflected off the bottom 
of the plate specimen, arriving at t = 30.5 #s. The first signal 
is at t = 1.24 in units of h/cL or 5.45 #s, corresponding to the 
propagation of the very fast longitudinal wave in the direction 
normal to the symmetry axis. The arrival of the surface wave 
in the measured normal displacement waveform is in excellent 
agreement with that computed. The surface wave amplitude is 
significantly smaller than that of the computed signal and there 
is noticeable spreading of the trailing edge of this signal. The 
measured signal exhibits other differences from the ideal com- 
puted case after ~20 /~s. The differences are likely the result 
of material damping (not included in the calculation), the arriv- 
als of reflected signals from the boundaries of the specimen, 
and the low-frequency rolloff in the receiver electronics. 

In previous work we have shown that by stacking a large 
number of signals measured or calculated at adjacent source/ 
receiver configurations, one obtains a scan image which repre- 
sents the detailed spatial and temporal characteristics of the 
elastic wave field in a material that can be directly related to the 
material's anisotropy and macrostructure (Every and Sachse, 
1991). Figure 8 shows a synthetic scan image consisting of a 
stack of 101 waveforms similar to those of Fig. 6, corresponding 
to a range of receiver positions between epicenter and 20 mm 
off-epicenter in a 25.8-ram-thick single crystal plate of zinc 
whose c-axis was aligned with the normal to the plate. This 
image clearly shows the wave arrivals of the various bulk wave 
modes and, in particular, their amplitude evolution. Of particular 
recent interest has been the extraordinarily high amplitude of 
the epicentral conical ray, which is the result of the focusing 
of the quasi-transverse wave modes toward the symmetry direc- 
tion. This is related to the phenomenon of external conical 
refraction (Kim et al., 1993b, c). 

6 Discussion and Conclusions 
We have shown the applicability of a conceptually simple, 

albe!t computationally demanding, procedure for the calculation 
for wave responses in a transversely isotropic thick plate by 
means of double numerical inverse transforms. This method is 
particularly well-suited for calculations of responses in the near 
field of layered structures, and is easily generalized for calcula- 
tion of responses in viscoelastic media, and to include the effects 
of finite aperture sources and receivers. The singularities of the 
integrand are eliminated by the introduction of a small, but 
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Fig. 8 Synthetic scan image of a single crystal plate specimen of zinc. The receiver posi- 
tion ranges from epicenter to 20 mm off-epicenter on the opposite side of the plate as the 
source, 

nonzero, imaginary part to the frequency. Except for issues of 
numerical accuracy, the procedure is, in principle, exact. By 
including another numerical transform, the method can be gen- 
eralized to calculate the responses in materials of more general 
symmetry. 

Generalization to materials of more arbitrary anisotropy is of 
particular importance for future work. The consequent addi- 
tional numerical inverse transform can be expected to signifi- 
cantly increase the computational burden. If the accuracies and 
time resolution achieved here were to be retained in the ~aonaxi- 
symmetric case, one estimates the computational burden in the 
generalization to be greater by a factor of about 10 4. For such 
applications, it may therefore prove worthwhile to seek addi- 
tional methods for the k-integration which are more efficient 
than the simple Simpson's rule used here. 

As an illustration, we have used this approach to calculate 
synthetic plate responses which could be compared to those 
measured in a single crystal specimen of zinc. Expected applica- 
tion of these calculations include point-source/point-receiver 
ultrasonics, quantitative acoustic emission measurements, and 
seismology. 
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