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Abstract 

This paper describes a number of elastodynamic experiments that have been used to measure the elastic constants of anisotropic 
solids, or potentially could be used for that purpose. The inversion algorithms that are used to recover the elastic constants from 
measured data are discussed. 
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1. Introduction 

Recently a number of measurements of elastic con- 
stants of anisotropic solids have been reported that are 
based on point excitation and detection and interpreted 
in terms of elastodynamic Green’s functions. Among the 
techniques employed are laser excitation and laser inter- 
ferometric detection, small aperture piezoelectric trans- 
ducers for excitation and detection, capillary and pencil 
lead fracture generation, capacitive detection and scan- 
ning acoustic microscopy. The aim of this paper is to 
review these elastodynamic methods and to describe the 
forward and inversion algorithms that are used. 

2. Time domain methods 

Time domain experiments involve applying a force 
with a step-function or ii-function time dependence at a 
point in a solid, and then measuring the time dependent 
displacement at some other point. For a force with step 
function time dependence 
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applied to an infinite elastic continuum, the response or 
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Greens’s function G,,(x, t) can be expressed in the form 
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The sum with respect to n is taken over the three 
acoustic branches. The first integral is taken over the 
unit hemisphere centred on the observation direction, 
with dR denoting the solid angle element in which the 
slowness vector lies. The second term is a line integral 
taken over the periphery of this hemisphere. Gsp(x, t) 
depends, through the factor A$ = Ur) Ur), on the pro- 
jection of the polarization vector UC”) of each mode on 
the forcing and sensing directions. Calculated Green’s 
functions show wide variation in shape, depending on 
the elastic constants, direction of observation point with 
respect to source point, and the components of the force 
and displacement referred to. 

One of the striking features of these waveforms are 
the singular features they contain - discontinuities and 
kinks etc. These are known as wave arrivals. These 
singularities propagate outwards from the source at the 
group velocities in each direction, and thus lie on the 
wave surface, i.e. the group velocity surface scaled by a 
factor t. There are separate sheets for the individual 
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branches (L, FT, ST), the inner two of which are often where I is mathematically infinite. These lines coincide 
folded in a complicated way. For an elastic half space in direction with folds in the wave surface. These effects 
there are also head waves and, along the surface, there have been extensively studied with thermal phonon 
is the Rayleigh pole, which lags behind the slowest imaging at liquid helium temperatures [S]. Focusing 
T wavefront, and which, along the surface, propagates patterns depend on the elastic constant ratios, and there 
the dominant singularity. For a plate there are also have been occasional efforts to use this to ‘fine tune’ 
numerous multipass wave arrivals. elastic constants [6,7]. 

In some experiments, it is only the singularities in the 
waveform that can be clearly distinguished, the remain- 
ing features being obscured by transducer ringing and 
other experimental artifacts. Every and Sachse [2] have 
implemented the following strategy for recovering elastic 
constants C, from a set of measured group velocities, 
V, associated with wave arrivals. With a starting set of 
CXs, Vs having the directions but not in general the 
magnitudes of the measured Vs are calculated numeri- 
cally. A succession of progressively improving values of 
the C,, are then generated which, at each step, reduce 
the mean square difference between the measured and 
calculated Vs. 

Going beyond the ray approximation, for a point 
force with sinusoidal time dependence of frequency o 
acting at the origin in an infinite elastic continuum, the 
displacement amplitude at point x is given by the Green’s 
function [l] 
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For data pertaining to certain high symmetry direc- 
tions such as 4-fold axes in cubic and tetragonal crystals, 
it is possible to derive closed form expressions relating 
the group velocities to the C,,, not only for the modes 
whose n lie in the symmetry direction (for which the 
phase and group velocities coincide), but also for the 
so-called oblique modes whose n lie away from the axis 
in symmetry planes. These expressions allow the C,, to 
be obtained by analytic means [3]. 

Some techniques, such as capillary fracture generation 
coupled with capacitive detection yield clear, well defined 
waveforms that can fruitfully be used to recover elastic- 
constants. We have determined the elastic constants CiZ 
and Cd4 of a (OOl)-oriented Si crystal by fitting the 
calculated infinite continuum Green’s function to single 
epicentral and near-epicentral waveforms. 

For finite wx the focusing caustics unfold into Airy, 
Pearcey and higher order diffraction patterns. The broad 
overall features of the focusing pattern survive, but 
the fine structure of the caustics is lost and in its place 
there is the expected pattern of diffraction fringes whose 
spacing becomes broader as the frequency is lowered. 
This effect is clearly evident in the acoustic microscopy 
images of anisotropic solids obtained by Weaver et al. 
[S] and others. The main features of their images are in 
good agreement with the computed Green’s function 
(?33(x, w) corresponding to the experimental parameters. 
Wuerz et al. [9] have used acoustic microscopy to 
determine the three elastic constants of GaAs, making 
use of a simplex inversion algorithm. 

Chai and Wu [4] have measured the directional 
dependence of the group velocities of laser generated 
surface acoustic wave (SAWS) in the (111) surface of 
silicon and in a unidirectional fibre composite, and have 
used a simplex optimization method to recover the 
elastic constants. Their algorithm is very similar to that 
of Every and Sachse [2] for bulk waves. 

SAWS also show focusing due to the variable curvature 
of the SAW slowness curve, with points of inflection 
mapping onto cusps in the group velocity curve and 
focusing caustics. These effects have been discussed in a 
number of papers (for references see [lo]) and they 
potentially provide another means of determining elastic 
constants. 
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It is common practice in frequency domain experi- 
ments to image the displacement response over a surface 
or, in the case of SAWS, to record the SAW amplitude 
as a function of direction in the surface. In both cases, 
one of the most striking observations is that of energy 
flux focusing [S]. For bulk waves, it can be shown 
that, in the far field limit, the intensity I is inversely 
proportional to the Gaussian curvature of the slowness 
surface. Lines of zero curvature thus map onto caustics 
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