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This paper describes a method of determining all five elastic constants of a hexagonal or transversely
isotropic medium of type II which has the cuspidal region of group velocity around the highest-
symmetry axis [001] perpendicular to the transversely isotropic basal plane. The elastic constants are
obtained from wave-speed data of broad-band ultrasonic signals propagating in two principal directions,
namely the [001] and the other parallel to the basal plane. The method uses specific cuspidal features of
the slow transverse (ST) mode propagating in the [001] direction with two distinct group velocities. An
analytic formula that relates the slower group velocity of the ST mode with the elastic constant C» is
derived. An example is provided with a single crystal of zinc exhibiting hexagonal symmetry. The ad-
vantages of this method lie in both its simplicity for implementation and its improved accuracy for deter-
mination of the elastic constant C».

I. INTRODUCTION

The theory of plane waves of sound propagating
through nondissipative media, including those of hexago-
nal or transversely isotropic symmetry, have been excel-
lently described by several authors. ' Spherical waves
emanating from the monopolar and dipolar point sources
and propagating in every direction of isotropic media
have been explained by others. Measurements of the
speed of these sound waves made by adopting various
techniques that use either harmonic waves or broadband
pulses can be found elsewhere.

For the most convenient and precise determination of
the elastic constant, the waves propagating in the direc-
tions of principal symmetry axes of media have been used
for several reasons: first, these directions can be easily
found or identified with best accuracy through macro-
scopic or microscopic observations or through an x-ray
analysis; second, in these directions samples of single-
crystalline forxn can be easily grown, cut, and aligned by
means of cleavage or favorable chemical etching, and this
facilitates a preparation for samples with uniform, paral-
lel, and finely polished surfaces (anisotropic composite
materials can also be easily fabricated and machined
along these directions); third, because of at least mirror
symmetry of material properties across the principal
planes of materials with orthorhombic or higher symme-
try, variations of wave speed and elastic constants are
minimal around the principal directions in comparison
with other nonsymmetric directions and thus any errors

in elastic constants associated with a small misorientation
of the sample about these axes are minimized; finally,
most important of all, both phase and group velocities of
the broadband elastic pulses propagating in the principal
directions coincide with each other and simple formulas
relating the speed of both longitudinal and transverse
waves to the elastic constants exist. This allows us to
determine all the elastic constants for materials of cubic
or isotropic symmetry. However, for materials with hex-
agonal (or transversely isotropic), tetragonal, orthorhom-
bic (or orthotropic), or lower symmetries, additional mea-
surements using the waves propagating in the nonprinci-
pal directions are required to determine all the elastic
constants. This poses difficulties in sample preparation
and results in less overall accuracy in determination of
them. Complications arise as to the waves of the
nonprincipal directions of the anisotropic media, because
wave propagation through them becomes dispersive even
in the absence of dissipation, and no simple analytic for-
mula can be found that relates the group velocities with

phase velocities from which the elastic constants can be
calculated. Although all the elastic moduli can be ob-
tained from the data of group velocities of broadband
sound waves propagating in the general directions of an-

isotropic media by adopting such an elaborate scheme as
the iterative nonlinear least-squares method, "' this in-

troduces additional difficulties and errors associated with
the elastic constants.

Recently, we investigated the wave propagation in a
single crystal of silicon, ' using a point-source —point-
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receiver (PS-PR) technique that was particularly well
suited for the study of wave propagation in various direc-
tions of elastic media. The pointlike-source excitation of
broadband sound waves was accomplished by breaking a
tiny glass capillary and also by irradiation of a high-
intensity, pulsed laser beam focused on the surface of the
silicon crystal. Capacitive and piezoelectric transducers
with a diameter of about 1 mm were used as pointlike
detectors. Of particular interest is the wave propagation
through a cuspidal region around a ( 100) axis of silicon,
quite unlike those found in isotropic materials. No
theoretical Green s function is available for cubic media,
and therefore a direct comparison of our data with theory
is not yet possible. However, Payton' ' calculated a
Green's function G33 for a half-space medium of hexago-
nal zinc, the slowness surface around the [0001] axis of
which bears some similarities to that of silicon around a
(100) cubic axis. Comparison of the silicon experimen-
tal data with Payton's results was quite revealing and il-
luminating about the nature of the cuspidal features of
silicon.

To have a direct comparison of experimental data with
Payton's results and to investigate further the wave prop-
agation through the cuspidal region of zinc, we used a
zinc single crystal oriented in the [0001] axis perpendicu-
lar to the transversely isotropic basal plane. Zinc has the
additional advantage that its cuspidal region lies around
the [0001] axis (type II), instead of lying somewhere
around a nonprincipal direction (type V). Classification
of the transversely isotropic media will be described in
Sec. II. This paper describes the broadband waves propa-
gating in the [0001] direction with one longitudinal (L)
group velocity and two distinct group velocities associat-
ed with the slow transverse (ST) waves. The group veloc-
ity of the faster branch of the ST (FST) mode is the same
as that of the fast transverse (FT) wave and, therefore,
the arrival of the FST mode at the detector reveals no
new information for determination of an elastic constant.
However, the slower branch of the ST (SST) mode is
highly focused toward the [0001] direction. As a result,
its arrival is very much pronounced and easily identified
as a minimum point of a deep trough in the signal detect-
ed by a capacitive transducer. The easy identification of
the SST-mode arrival enables us to calculate with
minimum error its group velocity, which is directly relat-
ed to the elastic constant by an analytical formula de-
rived from the ST sheet of the slowness surface of zinc.
This, combined with other velocity data of waves propa-
gating in two principal directions and measured by the
conventional techniques, yields all five elastic constants of
zinc.

II. THEORY

A. Wave surfaces

The following treatment of the wave surfaces, such as
those of phase and group velocities, and of the slowness
of elastic waves, has been extensively given in Refs. 2 —4.
In brief, let indices 1 and 2 of the reference coordinate
system be any of two mutually perpendicular axes lying

&=«t Ir;k —pv'&;k I
=0, (2.1)

where p is the density of the sample medium, v is the
phase velocity, 5,.k represents Kronecker's delta, and
Christoffel's stiffness tensor I;k =—C;~k&nj. nI for the hexag-
onal medium is defined as
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where the unit normal vector n of the wave is parallel to
the wave propagation vector k. Defining the slowness
vector s by the relation

s, =n, /v,
then the slowness surface S is written as
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(2.3)

(2.4)

Let co represent the angular frequency. Using the rela-
tion

(2.5)

and Eq. (2.1), one obtains the wave-vector surface Q
given by

&=detlk'r, „—p~'|~,„=0, (2.6)

where k is the magnitude of the propagation vector k.
The group velocity g, usually defined by the relation

VkQ
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can also be calculated from Eqs. (2.1), and (2.4), using

(2.7)
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A convenient way of obtaining these surfaces is to con-
struct the slowness surface, from which one then
proceeds to find the surfaces of phase and group veloci-
ties, using Eq. (2.3) and the last part of Eq. (2.8). The
specimen used in our experiment is a [0001] oriented,
hexagonal zinc single crystal. Considering other trans-
versely isotropic materials, such as uniaxially aligned,
fiber reinforced composites, we henceforth do not distin-

in the transversely isotropic basal plane; the direction of
index 3 represents the axis of circular symmetry, perpen-
dicular to the basal plane. Then, the fourth-rank elastic
stiffness tensor C;~k& of a hexagonal or transversely isotro-
pic medium is characterized by five constants, C» =C22,
C33 C44 C55 C ]2 C ]3 C23 for which the identity
C66 =

—,'(C» —C,2) holds. The phase velocity surface V of
the hexagonal system is conveniently written in the forms
first given by Christoffel, '
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C» =pvL, (L mode),

C~=pvsT, (ST mode),

C66=(C„—C,2)/2=pvFT, (FT mode) .

(2.9)

(2.10)

(2.11)

The ST mode of Eq. (2.10) is polarized in the [001] direc-
tion, and the FT mode of Eq. (2.11) is polarized in the

[001]

Qp

0 4
[Too]~ 0.2

Slowness (~s/rnm)

0.2
Qp

0.4
= [IOO]

FIG. 1. (010) section of slowness surface of zinc.

guish the [0001] crystallographic notation of hexagonal
media from the [001]notation used for composites, which
we will use to represent the third axial direction perpen-
dicular to the basal plane. Because of the circular sym-
metry of the above-mentioned surfaces of zinc about the
[001] direction, we choose, without loss of generality, a
(010) zonal section normal to the basal plane and perpen-
dicular to the [010] direction to represent these surfaces.

Our measured values of elastic constants, virtually
identical with those obtained by Alers and Neighbours, '
were used to generate a (010) section of slowness surface,
shown in Fig. 1, and the corresponding sections of the
surfaces of phase and group velocities, plotted in Fig. 2
with dotted and solid lines, respectively. As shown in
these figures, each surface consists of three sheets, one
corresponding to the longitudinal (L) wave, the other
two corresponding to the fast transverse (FT) and the
slow transverse (ST) waves. Of these waves, only the FT
wave is, for every direction of propagation in the zonal
section, of pure mode, the polarization of which is of the
SH (shear horizontal) type perpendicular to the sagittal
plane identical with the zonal section. In a general direc-
tion of propagation, I. and ST waves are, respectively,
quasilongitudinal and quasitransverse, polarized in the
sagittal plane, where the polarization of the ST mode is
simply described as SV (shear vertical). Both L and ST
waves become of pure mode for the waves with k directed
either in the [001]or in the basal plane.

For these waves of pure mode, the group velocity is
equa1 to the phase velocity, and simple equations relating
these velocities to the elastic constants of the medium can
be found. For waves propagating parallel to the basal
plane, the relations are
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FIG. 2. (010) section of surfaces of phase and group velocities
of zinc.

direction perpendicular to the zonal section. Both modes
are considered of SH type in this particular case.

For the waves propagating along the [001] direction,
one finds

C33=pvL, (L mode),

C44 =pvT, ( FT and FST modes) .

(2.12)

(2.13)

In this case, the FT mode is degenerate with the faster
mode of the ST wave (FST), as indicated in Figs. 1 and 2,
where one sees around the [001] direction complicated
cuspidal features of the group velocity of the ST mode
with two distinct velocities in the [001) direction and
with three distinct velocities in the neighborhood of the
[001]direction.

The cuspidal features about some specific direction of
transversely isotropic media arise due to the particular
shape of the slowness surface around that direction. For
zinc, the slowness surface of the ST mode about the [001]
direction shows a concave sheet, initially concave upward
starting from point Q„changing its curvature at point
Q„becoming convex downward with its gradient point-
ing in the [001] at point Q, and finally reaching point
Qo at the basal plane. The corresponding points in the
group-velocity sheet are marked with P„P„P,and Po,
respectively. For simplicity of nomenclature, let us call
the ray branches of the ST mode, P,P„P,P, and
P Po, by their acronyms, FST (faster ST) mode, IST (in-
termediate ST) mode, and SST (slower ST) mode, respec-
tively. All the ST modes with their k vectors lying on the
conical section OQ on the slowness surface are focused
onto the conical point P with their rays directed in the
[001] direction. Buchwald'7 classified the hexagonal
media with the cuspidal features around the [001] axis,
like those of zinc, as type-III media. Later, Payton' ela-
borated the category of transversely isotropic media, clas-
sifying them into five types according to the locations of
the cusps on the ray surface: type I has no cusps; type II
has two cuspidal triangles centered on the symmetric
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[001] axis; type III has two cuspidal triangles centered on
the axis parallel to the basal plane; type IV has four
cuspidal triangles centered both on the [001] axis and on
the axis parallel to the basal plane; type V has four cuspi-
dal triangles, none of which crosses the coordinate axes.
Type IV may be considered as belonging to a subgroup of
either type II or type III. Since this paper deals primari-
ly with the wave propagation along the [001] axis that
has the cuspidal triangles around it, we henceforth treat
type IV as a subgroup of type II. Types I, III, and V will
not be discussed further due to their irrelevancy to the in-
vestigation of this paper. The condition for being type II
is, according to Refs. 2 and 17,

(C,3+C44) )C„(C33 Cw), (2.14)

which is of course satisfied for zinc. Other examples of
type-II materials are apatite (Ca, o(PO4)&F2) and cadmi-
um.

B. Determination of the elastic constant C&3

+(C,3+C~4) sin 28]' (2.15)

In a similar case of using broadband pulses, group veloci-
ties are measured that bear no simple analytical relations
with the elastic constants. In either case, there arise
difficulties associated with sample preparation and accu-
rate orientation in the nonprincipal directions, as men-
tioned in Sec. IIA. This problem, which is associated
with the determination of the elastic constant C,3, can be
circumvented if we generate on the sample a pointlike
source of ST broadband pulses having their k vectors in
the direction of OQ „ofthe slowness surface and propa-
gating along the [001] direction with their group veloci-
ties equal to the value of OP in Fig. 2 and if we detect
them by a pointlike transducer, which yields a precise
value of the group velocity, because a simple analytical
formula can be derived that relates the group velocity
OP„of the ST mode with the elastic constant C&3. Such
excitations of broadband sources of sound waves are pos-
sible, for example, with the fracture of a tiny glass capil-
lary and the irradiation of a pulsed laser beam focused on
the surface of the sample. A miniature capacitive dis-
placement transducer, described elsewhere, ' can be used
as a pointlike detector.

There is no theoretical Green's function presently
available, which may be directly applicable to our experi-
mental data. However, Payton's calculation' of a
Green's function for a half-space medium of zinc oriented

For waves traveling along the two principal directions,
Eqs. (2.9)—(2.13) yield only four elastic constants Cii,
C33 C44 and C,2 ~ An additional way has to be found to
determine C&3, which has been usually obtained by
measuring the phase velocity of the harmonic L or ST
wave propagating in the zonal section with its k oriented
at angle 8 from the [001] axis. In this case, the phase ve-
locity is related to the elastic constants by '

2pvt sT= C44+ C&& cos 0+ C33sin 0

+[(Ciicos 8 C33slil 8 C44cos28)

in the [001] direction is quite illuminating. He calculated
the time dependence of the surface displacement in the
[001] direction, caused by a buried force of Heaviside
step-time function with magnitude I'3 acting in the same
direction at some distance h from the epicentral position
of the surface. Figure 3 describes his result of normalized
displacement tc3 =4m C44h W3/(pF3 ) as a function of nor-
malized time ~=vTt/h, where t represents actual time,
vT=QC44/p was already defined in Eq. (2.13), and W3
is the actual displacement in the [001] direction. In Fig.
3, the arrival of the L wave is marked by L, where a sud-
den step jump in displacement is evident. After the step,
it dwindles monotonically to zero at point T„which in-
dicates the arrival of the transverse mode. It causes a
kink at T j and induces a sharp downward displacement,
whose amplitude theoretically reaches to —Oo at point
T2, where the arrival of the ST mode reverses the down-
ward motion, resulting in a sharply steep jurnp in dis-
placement from —~ to a positive level, as shown in Fig.
3. A vertical, axisymmetric Heaviside step source acting
in the [001] direction of zinc gives rise to the waves of
both L and ST modes propagating in virtually every
direction inside the medium. However, because of
axisymmetry of the source, the net result of displacement
in the horizontal direction is zero. Thus, the FT mode of
SH polarization cannot be generated by axisymmetric
sources, which include the transient vertical force and
thermoelastic source, both acting on the surface of a
specimen; therefore, the wave arriving at T, must be a
FST ray. The wave arriving at T2 is a SST ray associated
with conical point Q on the slowness surface. Payton
has already explained the arrivals of the L, FST, and SST
rays, as mentioned above with Fig. 3. These arguments
are strongly supported by the experiment described in
Sec. III. Because of Payton's numerical calculation lack-
ing in detailed analysis, it is not understood why the ar-
rivals of the FST and SST rays cause displacements in op-
posite directions.

At the point Q „of the slowness surface,
t)S/t)si =OS/t)s2=0, and from Eq. (2.8) one obtains for
the group velocity g'3 corresponding to Q „

C:
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Half Space
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FICx. 3. Displacement response in the [001] direction in zinc
due to an excitation of Heaviside step force in the same direc-
tion.
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S3

(2.16)
PV
Fil

where s3 is the [001]-directional component of slowness s
at Q . The value of s3 can be found from Eqs. (2.2) and
(2.4), with the condition that at the point Q „ofthe slow-
ness surface, g, =gz=O when st%0 and szAO. The
derivation is straightforward but requires a rather in-
volved process, which will not be described here. Letting

~~~C p
Fracture

~~ =C»+C44

8+ =C» C33+C442

C:—(C,3+C44)

(2.17)

(2.18)

(2.19)

CQp
'--' Tra n

Zin

one finally obtains a quadratic equation for C that only
involves the elastic constant C,3. [QOI]

C —2(B+ —pg'33+ )C+(B —pg'3A ) =0 . (2.20) FIG. 4. Geometry of a specimen, the source, and detector for
sound waves.

The above equation, using the measured value of g3 and
other known values, determines two positive values of C,
the smaller of which fails to meet the condition specified
by Eq. (2.14) and is discarded. Thus, Eq. (2.20) yields for
C

C —= (C»+ C44)

=C„C33+C44 P$3(C„+C44 )

+2[Ct t C44(C33 —pg'3)(C44 —pg) ] ~ (2 21)

where the positive square root of C is again chosen for
determination of (C»+ C44), because the negative square
root of it yields a large negative value of C,3, which usu-

ally fails to satisfy one of the thermodynamic conditions
for the positive definiteness of strain energy of a hexago-
nal crystal. ' These conditions are specified as

(C„+C,~ )C33 )2Ct3 and Ct t C33 )C]3 (2.22)

Section III will be mainly devoted to how to measure g'3

and other elastic constants.

III. EXPERIMENT

A disk-shaped sample of single-crystal zinc oriented in
the [001] direction had a basal plane with diameter of
about 75 mm, and was about 25.71 mm thick. It was
prepared with both top and bottom basal planes polished
and parallel to each other. The orientation in the [001]
direction was achieved within 0.5' by using an x-ray
diff'raction pattern. It was observed that a finer adjust-
ment of orientation could be achieved through utilizing
the symmetric property of propagation of sound waves
about the [001] direction of zinc. A sketch of the sample
geometry and the location of sound source and receiver is
shown in Fig. 4. Two small portions of the opposite
sidewalls perpendicular to the basal plane were made flat,
polished, and parallel to each other. The flat faces on the
sidewall belong to the zonal section of zinc and were con-
structed to attach fIat broadband piezoelectric transduc-

ers of cylindrical shape with about 10 mm diameter.
These transducers transmitted either longitudinal or
transverse waves in the direction perpendicular to the
zonal section. The same piezoelectric transducers were
attached on the top surface to generate the broadband
plane-wave pulses in the [001] direction. For each mea-
surement, one transducer was used both to transmit the
waves and to receive a train of echoes that made a series
of round-trips between the parallel faces. These signals
were amplified, digitized at a sampling rate of 60 MHz,
and displayed on a x-y scope. The round-trip time of the
longitudinal and transverse waves was determined by
measuring the time interval between the corresponding
points of the echoes to calculate their group velocities,
which yield four elastic constants C», C33 C44 and C,2,
according to Eqs. (2.9)—(2.13). A detailed description of
this technique is found in Ref. 10, and we omit further
description of it here. It is, however, noted that the plane
shear wave transducer mounted on the surface of a speci-
men generates a transverse mode of SH type, whose po-
larization is parallel to the attached surface of the sam-
ple, and therefore it measures essentially the speed of the
FT mode. The ST mode specified by Eq. (2.10) is a spe-
cial case of SV polarization that becomes parallel to the
surface of a zonal section, and this mode can be generat-
ed by a shear transducer attached on the flattened
sidewall with its polarization aligned in the [001] direc-
tion. It is also pointed out that the transverse wave gen-
erated by the shear transducer attached on the sidewall
with its polarization oriented in an arbitrary direction of
the zonal section is split into the two modes specified by
Eq. (2.10) and (2.11), facilitating the determination of
both C44 and C66 by a single measurement.

As mentioned earlier, the determination of the elastic
constant C&3 was carried out by using a pointlike source
and pointlike receiver (PS-PR) method. The pointlike
source of sound waves was generated by breaking a glass
capillary of about 0.1 mm size by pressing it vertically
with a razor blade at the middle portion of the top sur-



10 998 KWANG YUL KIN AND WOLFGANG SACHSE

face of the zinc specimen through a piezoelectric polyvi-
nylidene fiuoride (PVDF) film with thickness of about
0.08 mm, laid on the top surface of zinc. The output of
the PVDF film, generated at a time of capillary fracture,
served as a trigger to a digitizer, which sampled at a rate
of 60 MHz the amplified output of a capacitive transduc-
er attached on the bottom surface. It also indicated a
time of source excitation, which provided a time of refer-
ence for measurements of travel times of various rays
propagating in the specimen from the top surface to the
bottom surface. It was observed that the capillary frac-
ture source resembles a Heaviside step function of force
drop with rise time less than 0.1 ps. The magnitude of
force drop at the time of the capillary fracture was mea-
sured via a miniature load cell attached to the razor
blade, and ranged typically from 5 N to 10 N. The capil-
lary fracture generated a broadband sound wave with
every possible direction of k in the medium. As pointed
out in Sec. II, because of its axisymmetry, it generated
only I. and ST modes, whereas the FT mode was absent.
The ST mode gave rise to the branches of FST, IST, and
SST rays in the cuspidal region of zinc, and in the [001]
direction it propagated with two distinct group velocities,
those of FST and SST. The signal generated by the capil-
lary fracture traveled through the sample in the [001]
direction and was detected by a miniature capacitive dis-
placement transducer with 1 mm diameter. The size of
the capacitive transducer subtended a half-conical angle
of about 1' when viewed from the capillary source, and
the errors associated with this finite aperture of the trans-
ducer in determination of elastic constants was negligible
in the [001] direction. Such an error becomes gradually
larger, as the source-to-receiver orientation moves fur-
ther away from the [001] direction. The output of the
capacitive transducer was amplified by a charge amplifier
having a charge-to-voltage conversion factor of 0.25
V/pC and a bandwidth of 10 kHz to 10 MHz. The out-
put of the charge amplifier was connected to the digitizer
operating at a 60-MHz sampling rate and displayed on
the x-y scope. A detailed description of the miniature
capacitive transducer has been given by Kim et al. '

This PS-PR technique was not pursued further along the
direction parallel to the basal plane, primarily because it
yielded no new information about an elastic constant and
partly because no theoretical Green's function G&I, to
which the experimental data could be compared, was
available.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Four adiabatic elastic constants C», C33 C44 and C&2,
obtained by using the plane waves traveling along the two
principal directions, are listed in Table I, together with
those reported by others. ' ' ' They are in excellent
agreement with the elastic constants measured by Alers
and Neighbours' using an ultrasonic pulse-echo tech-
nique, and favorably compare with those reported in Ref.
21. The density of zinc used for the calculation of the
elastic constants was 7134 kg/m .

Figure 5 displays a signal detected by the capacitive
transducer. Note a striking similarity between the two

TABLE I. Elastic constants of zinc reported by various au-
thors (in GPa).

Reference

This work
Ref. 17
Ref. 22

163.75
163.68
165

62.93
63.47
61.8

C44

38.68
38.79
39.6

Cl2

36.28
36.40
31.1

52.48
53.00
50.0

signals shown in Figs. 3 and 5, despite the fact that the
experimental signal corresponds to a plate Green's func-
tion, instead of a Green's function of a half-space medi-
um. This is not surprising, because the source and re-
ceiver in Payton's original calculation of the Green's
function of a half-space medium can be interchanged by
means of Betti's reciprocal theorem (see Refs. 5 and 6 for
a proof of the theorem), and the plate Green's function is
directly related to that of a half space via the reflection
coefficient of the free surface (001), which has otherwise
(or in continuum) a mirror symmetry across it. There-
fore, the wave form of the plate Green's function is ex-
pected to be similar to that of the half space except for an
amplitude. Note that a strong similarity has also been
observed for isotropic media under the same cir-
cumstances. In Fig. 5, I. marks the arrival of the lon-
gitudinal mode. Tf, which indicates a point of zero
crossing after the arrival of the L, wave, announces the ar-
rival of the FST branch of the group velocity of the ST
mode. The zero crossing in Fig. 5 is observed to be
smooth without a kink, as shown in Fig. 3. It is probably
because the kink shown in Fig. 3 is not sharp, and in the
experimental signal it becomes smoothed due to the finite
rise time of the source, finite aperture of the detector, and
finite bandwidth of the detection system. More support-
ing evidence for the interpretation of zero crossing after
the L-mode arrival as the arrival of the FST ray has been
found in the signals obtained, when the source-to-
detector orientation in the zonal section moves from the

0.10 I I I I
I

I I I I
I

I I I I
I

I I I I

0.05
C:

E
(1)

0.OO

CL

C3

I —0.05

—0.10 I I I I I I I I I I t I I I I I I I I

5 10 15
Time (ps)

20

FICx. 5. Displacement signal detected by the capacitive trans-
ducer with a zinc specimen with a capillary fracture source.
The source-to-detector orientation is in the [001] direction of
zinc.
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[001] and passes through the cuspidal region. The zero
crossing disappears when the propagation direction
moves out of the cuspidal region, and the amplitude of
the signal remains positive for quite a long time after the
arrival of the L mode, leaving the identification of ar-
rivals of only L and SST rays possible. When the propa-
gation direction corresponds with the cuspidal point P,
in Fig. 2, the amplitude of the signal after the L-mode ar-
rival first decreases to zero and then goes positive. The
experimental determination of cuspidal curves of the ST
mode, including FST, IST, and SST branches, will be
published elsewhere. The values of the elastic constants
C33 and C44 calculated according to Eqs. (2.12) and
(2.13), using the arrival times of both the L mode and the
FST rays in Fig. 5, are found to be virtually identical
with those measured by the plane-wave technique.

The point of sharp minimum of a deep trough, marked
with T, in Fig. 5, after the zero crossing would be even
more negative if a measurement system of source and
detection with higher bandwidth were used. The point
T, corresponds to a point of negative singularity in Fig. 3
and indicates the arrival of the SST branch of the group
velocity. This point corresponds to the ST modes having
their k's parallel to the various directions of OQ with a
constant azimuthal angle 0 on the conical section of the
slowness surface. The group velocity g'3 obtained from
the arrival of the SST ray is equal to 2060 m/s. Using
$3=2060 m/s and the known values of the density and all
the other elastic constants, one finally determines the
elastic constant C» from Eq. (2.21). The value of C,3 is
S2.48 GPa or 16.42 GPa. The C, 3 =52.48 GPa is chosen
because it only satisfies the condition of type II specified
by Eq. (2.14). Again, this value of C&3 is in excellent
agreement with that of Ref. 16 and in fair agreement with
that of Ref. 21. It is emphasized that locating the point
T, in the signal is facilitated due to the nature of sharp
minimum; therefore, a very small error is introduced in
the determination of C$3 This error is expected to be
even smaller with a system of higher bandwidth. For the
reasons mentioned in Sec. I and above, it is believed that
the error associated with C» in our measurement is the
smallest among those quoted in Table I.

With all five elastic constants of zinc thus determined,
it is pointed out for reference that the azimuthal angle 0
between the [001] axis of zinc and the conical section of
OQ „ofthe slowness surface is calculated to be 24.5 . All
those ST modes whose k vectors lie on the conical surface
with the azimuthal angle 24.5 are focused with their ray
direction parallel to the [001]. It was observed that the
amplitude of the SST ray was maximum in the [001]
direction, as predicted by the theory of phonon focus-
ing. This gives strong evidence for the existence of
external conical refraction, a phenomenon not observed
in acoustics as yet, but claimed to be observed in optics.
When this ray transmits through a boundary to an isotro-
pic medium, it gives rise to the external conical refrac-
tion, which will be reported elsewhere.

The longitudinal waves propagating along the free sur-
face radiate their energy into the interior to meet the free
boundary conditions, and the wave front of these interior
rays is known as a head wave. For zinc with a capillary

fracture source on the surface, the rays of head waves
detected by an epicentral detector constitute a cone cen-
tered on the [001] axis with an azimuthal angle 3.04'.
The corresponding conical section on the slowness sur-
face has an azimuthal angle 23.3, slightly less than that
of the conical section of OQ „ in Fig. 1. The group veloc-
ity of the head waves is calculated to be 2113 m/s, and
the measured speed of the L wave traveling on the sur-
face equals 4791 m/s. As a result, both the conical head
wave and the epicentral SST ray arrive almost simultane-
ously at the detector. In fact, the arrival of the head
wave is calculated to be only 0.0087 ps ahead of the ar-
rival of the SST ray, marked with T, in Fig. 5 for the zinc
specimen with a thickness of 25.70S rnm, through which
the SST ray takes 12.478 ps to travel. Taking into ac-
count the sampling time interval 0.0167 ps and the finite
size of the detector (0.5 mm radius), both arrivals are
considered as simultaneous within an experimental error.
The contribution of the head wave to the epicentral dis-
placement is, however, assumed to be much weaker in
comparison with that of the epicentral SST ray, because
the axisymmetric capillary fracture source of the L wave
propagating along the surface is of dipolar type, whereas
the source of the epicentral SST ray is essentially of
monopolar type. Rather, the effect of the conical head
wave on the epicentral displacernent signal could be the
broadening of the negative sharp minimum of a deep
trough, as shown in Fig. 5, weak and by no means visible
as its effect may be in the figure. In contrast, a pulsed
laser beam gives rise to a source of dipolar type aligned
along the surface and generates a large horizontal surface
displacement, which results in the strong L and head
waves traveling along the surface and through the interi-
or, respectively. Away from the epicenter, the head wave
propagating toward the detector is no longer conic, and
its arrival splits apart from that of the SST ray. When a
focused pulsed laser beam was scanned on the surface of
the zinc specimen, various wave fronts, such as those of
the L ray, head waves, and IST and SST rays, were ob-
served to be quite distinctive.

Other interesting questions may be raised as to wheth-
er or not the method we have described in this paper is
applicable for the determination of elastic constants to
other symmetries that show cuspidal features about the
principal symmetric axis, say, those of silicon about a
(100) axis. The answer is possibly yes, and the investi-
gation using silicon is under way.

V. CONCLUSIONS

This paper shows a novel method for determining all
five elastic constants of type-II hexagonal or transversely
isotropic media from the speeds of sound waves propaga-
ting along two principal directions, namely [001] and any
direction perpendicular to it. The method is demonstrat-
ed using a single crystal of zinc. The broadband sound
waves generated by the fracture of a tiny glass capillary
induces three [001]-directional rays propagating at three
distinct group velocities, one associated with the L mode
and the other two associated with the ST modes. The
detected signal shows first an L-wave arrival and then a
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zero crossing immediately followed by a sharp minimum
of a deep trough. The zero crossing is caused by the ar-
rival of the FST ray whose group velocity is directly re-
lated to the elastic constant C44. The point of sharp
minimum indicates the arrival of the SST ray whose
group velocity is related to the elastic constant C» by an
analytical formula derived from the slowness surface of
type-II media. We have shown that it is very easy to
determine these group velocities from the signal detected
by a pointlike capacitive displacement sensor, and this

leads to an accurate determination of the elastic constant
C» ~
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