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Analytical and optimization procedures for determination of all elastic 
constants of anisotropic solids from group velocity data measured 
in symmetry planes 

Kwang Yul Kim,a) Rok Sribar,b) and Wolfgang Sachse 
Departtnent of Theoretical and Applied Mechanics, Thurston Hall, Cornell University, Ithaca, 
New York 148.53 

(Received 24 OctobeFl994; accepted for publication 9 February 1995) 

Analytical and optimization methods of determining all elastic constants of elastically anisotropic 
solids from the group velocities measured in various directions in ‘the symmetry planes are 
described. The group velocities in various directions of the specimen are measured, using broadband 
pointlike and line-type sources in combination with pointlike detectors, and changing a 
source-to-detector orientation. The mixed index elastic constants of the specimen are determined 
using analytic formulas that relate the elastic constants to the group velocity in an arbitrary direction 
on the symmetry plane. It is demonstrated that given the numerous group velocity data, one can 
efficiently determine the elastic constants by first converting them into phase velocity data and then 
applying the least-squares optimization methods to the phase velocity data. Examples are provided 
with specimens of transversely isotropic zinc, cubic silicon, and orthotropic fiber-reinforced poly 
ether ether kethon. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

In an elastically anisotropic medium phase and group 
velocities do not coincide in a general direction of propaga- 
tion of sound waves. Analytic relations between the elastic 
constants of elastically anisotropic media and the phase vie- 
locities propagating in a general direction in the mei%a 
are conveniently found in the solution of the Christoffel 
equation.im3 However, no such analytic formula can be easily 
found in a closed form between a group velocity and elastic 
constants for an arbitrary propagation direction in an aniso- 
tropic medium. Consequently, the elastic constants are most 
often determined using the measured phase velocity data. 
The measurement techniques forfphase velocities are excel- 
lently described in the literature.4-7 The phase velocities are 
accurately measured by various ultrasonic plane-wave tech- 
niques using either continuous harmonic waves, bursts of 
harmonic waves, or pulses, which travel through a specimen 
that has been oriented in a specific direction with two oppo- 
site faces polished and parallel to each other. Apart from 
wave-speed measurements, a resonance technique for a small 
anisotropic specimen was developed to determine all the 
elastic constants of a medium.8Y9 

When the destructive sectioning or shaping of a sample 
is not desired, it is possible to obtain the phase velocities 
required for complete determination of all the elastic con- 
stants. With a rotary composite material specimen immersed 
in a fluid, Rokhlin and Wang” used critical angle measure- 
ments for which phase and group velocities coincide. More 
general considerations between phase and group velocities 
have been described by Sahay, Kline, and Mignogna.” 
Guided-wave techniques including plate-mode techniquesi 
and surface-wave techniques13 are employed to calculate the 

‘)Electronic mail: kykim@msc.comell.edu 
“Present address: Engineering Mechanics Laboratory, General Electric 

Company, P.O. Box 8, Schenectady, NY 12301. 

elastic constants of a composite specimen, where they are 
determined by relying on a more complicated numerical 
method in the absence of closed-form analytic solutions. 

Over the last several years some authors’4-1g used a 
pointlike-source (PS) and pointlike-detector (PD) technique 
to measure the group velocities. Since a broadband pointlike 
source generates elastic waves propagating in virtually all 
directions, this method has advantages that it does not re- 
quire sectioning or preparation of parallel surfaces of a speci- 
men and at the same time group velocities of both longitu- 
dinal L and transverse T modes in many directions of a 
specimen can be easily obtained by scanning either a source 
or a detector on the surface of the specimen. The broadband 
PS-PD technique is applicable even to thick high-loss mate- 
rials. Group and phase velocities coincide in the principal 
symmetry directions, along which Aussel and Monchalint4 
measured the group velocities of ultrasound generated by a 
focused laser beam and detected by a laser inte&ometer to 
obtain all three elastic constants of cubic germanium. Doyle 
and Scala” used a laser-line source to determine elastic 
properties of fiber composites. Their observations relate the 
elastic constants to bulk waves as well as Raleigh and sur- 
face skimming waves. Rim, Sachse, and Every’6-‘8 used 
various configurations of pointlike capillary fracture, piezo- 
electric Pb(Zr,Ti)d, (PZT), and laser sources in conjunction 
with a small PZT or capacitive displacement detector to mea- 
sure the bulk wave group velocities. In a general propagation 
direction the calculation of group velocities is carried out 
using a Monte Carlo technique. Niu,lg for transversely iso- 
tropic zinc and fiber-reinforced composite, and Every and 
Sachse,20 for cubic media, used the Monte Carlo technique 
and nonlinear-least-squares iterative method to determine the 
elastic constants of the materials. 

Quite recently, one of the authors 21 derived analytic re- 
lations between elastic constants and a group velocity along 
an arbitrary direction of the symmetry planes of media with 
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FIG. 1. Coordinate systems for group and phase velocities. 

orthorhombic or higher symmetry. In this work, we use these 
analytic velocity formuIas to determine all the elastic con- 
stants from the group velocity data measured by PS-PD tech- 
niques. In addition, we present a novel method of determin- 
ing shear horizontal (SH) mode group velocities, which are 
valuable to determine pure index shear moduli, such as CM, 
Cs5, and Cb6. Furthermore, we propose efficient optimiza- 
tion methods for calculation of the elastic constants by con- 
verting the group velocity data into the corresponding phase 
velocity data. Examples are provided with a thick trans- 
versely isotropic zinc disk, a thick cubic silicon disk, and a 
thin orthotropic fiber-reinforced composite plate. In the 
former two materials bulk wave group velocities including 
those of quasilongitudinal (QL), fast transverse (FT), and 
slow transverse (ST) modes are used for the determination of 
all the elastic constants, while in the orthotropic composite 
the group velocities of bulk and surface skimming longitudi- 
nal waves are measured for the same purpose. 

II. THEOFlETlCAL BACKGROUNDS 

Let us denote three principal axes of symmetry of an 
orthorhombic medium by x1, x2, and x3 directions. Essen- 
tially identical relations between the elastic constants and 
sound wave speed can be found for waves traveling in the 
three symmetry planes, i.e., x1x2, x2x3, and x1x3, by the 
proper rotation of indices. Therefore, we take a wave travel- 
ing, for example, in the x1x3 plane with its wave normal n 
and group velocity Vg oriented at angles 0 and c, respec- 
tively, to the x3 axis, as depicted in Fig. 1. The positive sense 
of both 0 and b is taken in a clockwise direction from the x3 
axis. Because of the reflection symmetry of the x1x3 plane 
across the x1 axis for media of orthorhombic or higher sym- 
metry, we restrict without loss of generality the range of both 
5 and 8 to -9OW5, 690”. Recall that the elastic properties 
of an orthorhombic medium are characterized with nine elas- 
tic constants: Cll, C22, c33, Car C55, C66, c,,, c13, and 
c23. 

A. Formulas for the principal symmetry directions 

Formulas relating a phase velocity to the elastic con- 
stants of solid media are described by many authors.lm3 
Simple relations between the elastic constants and the wave 

speed exist for waves traveling in the principal symmetry 
directions, in which the phase and group velocities coincide 
with each other. The longitudinal L waves traveling with 
speed V, along the x1, x2, and x3 directions yield, respec- 
tively, 

pv2=c1,, pv;=c,,, pv;=c33. (1) 

Pure index shear moduli can be calculated from the wave 
speed of transverse T modes propagating in the principal axis 
directions. One obtains from the transverse waves propagat- 
ing with speed V, along the x3 direction and polarized in x1, 
and x2 directions, respectively, 

pV2,=C55, pv2,=c44. (2) 

Similarly, CM, C,,, C66 can be determined from the speeds 
of pure transverse waves propagating in the x1 and x2 direc- 
tions. Equations (1) and (2) indicate that all pure index elas- 
tic moduli can be obtained from the pure L and T waves 
traveling in the principal symmetry directions of a medium. 

B. Phase velocity formulas for the symmetry planes 

The pure index shear elastic moduli can be also deter- 
mined from the pure transverse (PT) modes propagating in 
an arbitrary direction of the symmetry planes. For example, 
the following relation holds for the phase velocity of PT 
mode traveling in the x1x3 plane: 

pV$= c(j(j sin2 8+ Cd4 cos2 8 (PT mode). (3) 

The above equation indicates that both C, and C6, can be 
obtained by measuring PT wave speeds at least in two dif- 
ferent directions. By performing similar measurements in the 
x 1x2 and ~2x3 planes all the shear moduli, CU, C55, and 
C66, can be obtained. 

Once the pure index elastic moduli C,, , C22, C33, CM, 
Cs5, and CM are determined by the method described above, 
the mixed index elastic moduli C12, C23, and Cl3 can be 
obtained from the phase velocity measurement of either 
quasilongitudinal (QL) or quasitransverse (QT) mode propa- 
gating in the x1x2, ~2x3, and x1x3 planes, respectively. 
Again, we consider a wave traveling in the x1x3 plane. Let us 
define for simplicity of notatioy the following identities: 

Cllr=C11kC55r 

C33t'C33kC55, (4) 

C 13+=c13+c55. 

The relations for the QL and QT modes are given by 

2pV2Q,,QT=C11+ sin2 e+c33+ ~0s~ 8 

k[(C,,- sin2 e-c33- c0s2 ej2 

+4c:3+ sin2 8 c0s2 ep2, (5) 

where the positive and negative signs in front of the square 
root of Eq. (5) correspond to the QL and QT modes, respec- 
tively. Equation (5) relates the elastic constant Cl3 to the 
phase velocity of QL or QT mode propagating in an arbitrary 
direction in the x1x3 symmetry plane. Suppose that for a 
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wave normal specified by an angle 0, both QL and QT phase 
velocities, VQL and VQT, are known for the same angle 8. 

Then, it follows from Eq. (5) that 

p(V&+V&)=Cll+ sin2 e+c33+ c0s2 e 

=C33++tCll+-C33+h2 6 (6) 

p2( V&- V&)2= ( C1 1 sin2 e- c33- c0s2 ej2 

+4c:3+ sin2 8 cos2 8 

=Cz,--2(B+C&-)sin2 e 

+(CTl-+2B+Cz,-)sin4 8, (7) 
where the quantity B is defined as 

B=.Cl,-C33--2&+. (8) 

Similar equations can be found that relate Cl2 and C23 to 
the phase velocity of QL or QT mode propagating in the 
x1x2 and ~2x3 planes, respectively. Thus, for an orthorhom- 
bit medium, all nine elastic constants can be determined 
from appropriate phase velocity measurements. 

C. Group velocity formulas for the symmetry planes 

Because of mirror symmetry across the symmetry 
planes, all the wave normals in the symmetry plane will map 
themselves onto the corresponding symmetry plane in the 
group velocity or ray surface. With the exception of a trans- 
versely isotropic medium, the converse is not generally true, 
as is well known in the theory of phonon focusing.22,23 Be- 
cause of the nonspherical shape of the QT mode slowness 
surface of an anisotropic medium, some points with their 
wave normals that do not lie in the symmetry plane of the 
QT slowness surface may map themselves into the symmetry 
plane of the group velocity surface. The group velocity sec- 
tions that do not correspond to the symmetry plane of the 
slowness surface are not of our interest here. Again, we con- 
sider an elastic wave traveling in the x1x3 symmetry plane 
with its wave normal n and Vs at angles 8 and 5 measured 
from the x3 axis, respectively. 

A simple formula that relates group velocity to 5 exists 
for the PT waves with SH polarization’*2 and can be ex- 
pressed as 

1 sin2 5 - -+$ (PT 
z- (26 

mode). (9) 

Equation (9) indicates that two shear elastic moduli CU and 
CG6 can be obtained by measuring the group velocities of PT 
modes propagating at least in two different directions. By 
performing similar experiments in the x1x2 and x2x3 sym- 
metry planes all shear elastic moduli CU, Cs5, and C66 can 
be determined. 

Let us define for simplicity of notation 
p=tan 8, q=tan 5, (10) 

D=[(C,1~p2-C33-)2+4C:3+~2]1’2>0. (11) 

Then it can be shown that B in Eq. (8) and the above D are 
related by 

1 
B= 2 (Cfl-p4+C$3--D2). 

2P 

One of the authors2’ has derived the following Eqs. (13)- 
(17). The relationship between the directions of group veloc- 
ity and wave normal is given by 

B-C:,-P~T.$I.+D 
q=p ~p2-C;3-i;3j+D1 . 

. . . . (13) 

which on the substitution of Eq. (12) yields 

D2+2C11+Dp2+Cfl-p4-C;3- 
q=p(D2t2C33+D-C:,-p4+C;3-)* 

. - (14) 

We express Eq. (13) in the form of 

(15) 
Equation (13) or (15) can be used to find the wave normal 
corresponding to a given group velocity direction lying in the 
same corresponding symmetry plane, and vice versa. Equa- 
tion (14) is quadratic in D, the solution of which as a func- 
tion of p = tan e is written as 

D(P) = ~{P(~c33+9~cll+P)~[P2(c33+4 

-C11+P)2-(l-P292)(Cf1-P4-C~3-)11/2}. 

(16) 
In the above equation we choose the region of p=tan /3, 
where D is real and positive. Finally, the relation for group 
velocity is given by 

pv;= 
(1+q2)(C~,-p4-C;3-72C33+D-D2)2 

8D2W~~,~2+ C33+ +D) . 
(17) 

The upper and lower signs either in -t- or in ? in Eqs. (13)- 
(17) apply to the QL and QT modes, respectively, except in 
the f. sign in front of the square bracket for square root in 
Eq. (16), which applies to both QL and QT modes. 

Equation (17) expresses the group velocity as a function 
of p =tan 0, when D is substituted by the expression on the 
right-hand side of Eq. (16). Suppose experimentally or by 
other means as described in Sets. II A and II B that all the 
quantities including a group velocity Vg , its direction [, 
C 11+7 Cl,-, c33+9 and C,,- are known. Then, Eq. (17) can 
be solved to find p which makes D in Eq. (16) real and 
positive. Once the value of this p is found, one can obtain the 
values of D, B, C13+, and finally Cr3, using Eqs. (16), (12), 
(8), and (4), respectively. On the other hand, given the values 
of all the elastic constants of a medium, Eq. (13) or (15) 
combined with Eq. (17) can be used to predict the values of 
QL or QT group velocities in a general direction in the sym- 
metry plane. 

For an elastic pulse propagating in the x1x2 and ~2x3 

planes, equations equivalent to Eqs. (13)-(17) can be ob- 
tained for the QL and QT modes in a similar way by the 
proper rotation of indices in the notation of the elastic con- 
stants. Note that Eqs. (1) and (2) are contained in Eqs. (13)- 
(17) as a special case, in which %=e=O and the phase and 
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group velocities coincide with each other for both QL and 
QT modes. Equation (2) is also contained in Eq. (9) as a 
special case of 5=19=0, in which two transverse modes be- 
come degenerate. 
D. Extension to higher-symmetry groups 

Nine independent elastic constants of an orthorhombic 
medium are reduced to six for the Laue tetragonal TI group 
(and also for the TII group when the seventh elastic constant 
Ci6= - CZ6 is eliminated by the suitable rotation about the 
xs axis) by the identities 

Cll=Czzr c13=c23~ c44=c55, (18) 

and to three in the cubic symmetry group by the relations 
- 
XI 

%11=Czz=C33, ~12=~23=~13, c44 = c55 = cf& . 

(19) 
FIG. 2. Diagram relating the surfaces of normalized group and phase ve- 
locities, and slowness. 

For elastic waves propagating in the x1x2, ~2x3, or x1x3 
symmetry plane, there is no distinction between the x,x3 and 
~2x3 planes for the tetragonal medium and no distinction 
between all three x1x2, ~2x3, and x1x3 planes for a cubic 
medium. The relations that hold for the symmetry planes of 
an orthorhombic medium extend to the corresponding sym- 
metry planes of tetragonal symmetry with the substitution of 
Eqs. (18) into Eqs. (13)-(17) and, likewise, they apply to the 
cubic symmetry with the substitution of Eq (19) into Eqs. 
(13)-(17). 

Hence, the formulas developed in orthorhombic and tetrago- 
nal media apply unambiguously to a transversely isotropic 
medium with Eqs. (21) and (22) used for appropriate elastic 
constants. 

E. Conversion between phase and group velocities 

The slowness s is defined as an inverse of phase velocity 
V and expressed as 

Consider elastic pulses of both QL and QT modes trav- 
eling in the {ni ,ni ,0}-type diagonal symmetry planes of 
tetragonal and cubic symmetry media. The directions of 
wave normal n and group velocity are specified by angles 8 
and b to the x3 axis, respectively. It is shown in Ref. 21 that 
exactly the same relations between Vg , tan 5, tan 0, and elas- 
tic moduli as those found in Eqs. (13)-(17) can be obtained, 
respectively, by simply replacing Cl1 by K, C,, by C,, 
Cii, by Kt. The quantities K, Kr, and C,,, are now de- 
fined as 

s=nlv=ww, (23) 
where k is a wave vector in the same direction as n and w 
denotes the angular frequency. The equations of normal sur- 
face N and slowness surface A are found from the Christof- 
fel equation. The Christoffel equation and the slowness sur- 
face A are respectively expressed as 

detl Cijklnjnl- pV2 sikl= 0, 
~-~ 

(24) 

h=det] Cijklsjs[-pGik] ~0. (25) 

Group velocity V, can be obtained from the relation 

K,=K+C44, (20) 

C11.=Cl*f-C44. 

V.4 
Vg=VVkW=V,V= - s-VJ C-W 

A group velocity formula for a F’T wave traveling in the 
diagonal plane and polarized normal to the plane is found by 
replacing C,, by (Crr - Cl,)/2 in Eq. (9). 

A hexagonal or transversely isotropic medium is charac- 
terized by five nonzero elastic constants, 

c11=c22. c337 Cl27 c13=c23y c44= c55. (21) 

In addition, the following relation holds for a transversely 
isotropic medium 

The normal surface is the pedal surface of the ray surface 
and conversely the ray surface is the envelope of planes 
drawn at right angles to the phase velocity V on the normal 
surface.lX2 These relations are illustrated graphically in Fig. 
2, where each surface is drawn using dimensionless phase 
and group velocities and dimensionless slowness normalized 
against the corresponding values along the [OOl] axis in 
which 19=l=O. These observations can be described by the 
following relations: 

c66=(cll-cd2. (22) 

For a hexagonal or transversely isotropic medium, only 
the wave normals of both QL and QT modes lying in the 
symmetry planes map themselves into the corresponding 
symmetry planes of group velocity surfaces, and vice versa. 
In addition to the basal symmetry plane, all the planes con- 
taining the [OOOl]-zonal axis are identical symmetry planes. 

V,.Ss=V,.(SMo)=V.SV,=n.SV,=(Mo).6V,=O, 
(27) 

V=V,.n. (28) 

For the phase and group velocities propagating in the sym- 
metry planes, which have been discussed in Sets. II B and 
II C, Eq. (28) can be written as 

v= vg cos up= vg c0s(l- e), (29) 
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where rp denotes an angle between the directions of a wave 
normal and the corresponding group velocity. Equations (27) 
and (28) also hold for the electromagnetic waves.% 

Given many group velocity data measured along various 
directions in the symmetry plane, a statistical optimization 
approach based on a curve fitting to be described next may 
be more convenient in obtaining elastic constants than the 
method described in Sec. II C. Equation (27) implies that the 
direction of a wave normal or a phase velocity points per- 
pendicular to the tangent of a curve that fits the group veloc- 
ity data, and vice versa given the phase velocity data. These 
relations are expressed as 

1 dV 1 dV, 
tanq=~~=v,-. -~ i (30) 

Since we primarily deal with measured group velocity data, 
we pay attention to the conversion from the group velocity to 
the corresponding phase velocity data, using the latter part of 
Eq. (30). Combining Eq. (29) with Eq. (30), one obtains 

The dependence of group velocity on a directional angle 
5 for a PT mode is given by Eq. (9). The conversion of PT 
mode group velocities into phase velocities offers no advan- 
tage to determination of shear elastic moduli, as can be seen 
in Eqs. (3) and (9). Since a simple analytical relation be- 
tween Vg and 5 is not obtainable in a closed form for both 
QL and QT modes, we choose conveniently to fit group ve- 
locity data in a polynomial form as 

vg=Ii c,,!?, (32) 
rt=O 

where all the coefficients c,, can be determined by a linear- 
least-squares method and the constant co represents the 
group velocity of QL or QT mode along the principal axis for 
which c=O. With these coefficients thus determined, Eqs. 
(29)-(32) can be used to calculate the phasevelocities V(O) 
corresponding to the group velocity data V,(l). In case that 
either QL or QT phase velocities V( 0) can be determined, we 
fit either of them into Eq. (5) by a nonlinear-least-squares 
method to obtain relevant elastic constants. On the other 
hand, when both QL and QT phase velocities can be calcu- 
lated for the same angle 8, it is much easier to fit both of 
them into Eqs. (6) and (7) using a much simpler linear-least- 
squares technique for determination of relevant elastic con- 
stants. For plate-shaped composite materials and crystals 
aligned, e.g., in the x3 direction normal to the plate, C33r C5s, 
and CU can be easily obtained by measuring L and T wave 
speeds propagating normal to the plate. Then, one invokes 
Es. (6) to find Cll+, Crt, and C,,-. Finally, from Eq. (7) one 
obtains B, Ct3+, and Cr3. 

Ill. EXPERIMENTAL SETUP 

Three different kinds of specimens are used to measure 
group velocities along various directions in the symmetry 
planes of the specimens: (i) a disk-shaped hexagonal or 

10011 

FIG. 3. Geometric schematic of capillary fracture source and capacitive 
detector used for zinc and silicon specimens. 

transversely isotropic zinc crystal that is 25.8 mm thick, 75 
mm in diameter, and oriented in the (001) plane; (ii) a disk- 
shaped cubic silicon that is 49.15 mm thick, 100 mm in 
diameter, and oriented in the (001) plane; (iii) an orthotropic 
fiber-reinforced poly ether ether kethon (PEEK) plate that is 
190 mm long, 24 mm wide, and 3.26 mm thick with 30% 
weight fraction of carbon fiber. 

Four different configurations of ultrasonic source and de- 
tector are employed to measure the travel times of various 
rays that travel at their own distinct group velocities from the 
source to the detector: first, a capillary fracture source and a 
capacitive displacement transducer with the round sensing 
element of diameter 1 mm for zinc and silicon specimens; 
second, a capillary fracture source and a longitudinal-mode 
piezoelectric PZT detector of 0.75 mm in diameter for the 
PEEK specimen; third, a shear-mode PZT source of diameter 
0.75 nun and a S PZT detector of the same size for the zinc 
specimen; fourth, a line-type S PZT source that is 5 mm long 
and 0.75 mm wide and a S PZT detector of 0.75 mm diam- 
eter for the PEEK specimen. A capillary fracture source is 
activated when a tiny glass capillary of diameter less than 0.1 
mm is broken by pressing it vertically on the surface of a 
specimen with a razor blade. The source-time function asso- 
ciated with the capillary fracture resembles a Heaviside step 
force with rise time less than 0.1 ~s.‘~ The former three 
source-detector configurations correspond to those of a PS 
and pointlike detector PD and the last configuration may be 
characterized as that of a line-type source (LS) and PD. 

Figure 3 shows a geometric configuration of glass capil- 
lary fracture source and capacitive displacement transducer 
employed with the zinc and silicon specimens. The capaci- 
tive transducer senses the displacement component normal to 
a surface and is fixed at origin on the bottom surface. A 
0.08~mm-thick polyvinylidene fluoride (PVDF) film is laid 
on the top surface of zinc and silicon specimens and the 
capillaries are broken on the PVDF film at various points 
lying on the straight line that passes through the epicenter. 
For the silicon specimen this straight line is parallel to either 
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S PZT Source 

PIG. 4. Geometric schematic of S PZT source and S PZT detector used for 
a zinc specimen. 

the (loo), (OlO), or (110) direction. The elastic waves gener- 
ated by the capillary fracture at various points on the top 
surface propagate through the specimen and are detected by 
the capacitive transducer. The output of the capacitive trans- 
ducer is amplified by a charge amplifier the bandwidth of 
which extends from 10 kHz to 10 MHz and the voltage-to- 
charge sensitivity of which is 0.25 VlpC. The amplified sig- 
nal is fed into a digitizer which samples it at a 60 MHz rate 
with 10 bit resolution and the digitized signal is displayed on 
an x-y scope for visual observation. The output of the PVDF 
film, generated at the instant of capillary fracture, serves as a 
trigger to the digitizer and also indicates the time of source 
excitation that provides a reference time for measurements of 
travel times of various rays propagating from the source to 
the detector. All these outputs are stored on the hard disk of 
a microcomputer for subsequent signal processing and data 
analysis. The capacitive transducer used in this experiment 
and its electronic setup are described in detail by Kim et al26 

Figure 4 displays a geometric schematic of a pointlike S 
PZT detector with a pointlike S PZT source. This configura- 
tion is used for group velocity measurements of SH polarized 

PT modes with a zinc specimen. The method of measuring 
the PT mode group velocity by using the PS and PD is de- 
scribed in the article of two of the authors.17 For measure- 
ments of the PT group velocity in a PEEK specimen, the 
pointlike S PZT source in Fig. 4 is replaced by the LS PZT 
source. QL mode group velocities of the PEEK specimen are 
obtained with a capillary fracture source and a L PZT detec- 
tor that is located on either the top or bottom surface. The 
source-detector configuration associated with the PEEK 
specimen is later described in detail in Sec. IV C (see Fig. 9). 
The S PZT ultrasonic source is excited by a high-voltage 
pulse derived from the Panametrics model 5055PR. The sig- 
nals detected by the L- or S-mode PZT transducers are am- 
plified with 40 or 60 dB gain by a low-noise amplifier, the 
bandwidth of which extends from 20 kHz to 2 MHz. The 
amplified signals are brought into a digitizer with a 60 MHz 
sampling rate, fed into an x-y scope, and, finally, stored in a 
microcomputer. 

A major measurement error of about 1% in group veloci- 
ties of zinc and silicon is due to a finite size of the detector 
(0.75 or 1 mm in diameter) located in nonsymmetry direc- 
tions. Along the epicentral symmetry directions of these 
specimens the variation of group velocity with source-to- 
detector orientation is zero to first order and a major error as 
large as 0.2% in group velocity data derives from the finite 
sampling rate and bandwidth of system. The overall error is 
estimated to be about 0.4% in pure index elastic moduli Cij 
(i=j) and about 5% in mixed elastic constants C, (i# j) 
both for zinc and for silicon. A major error in group mea- 
surement of the PEEK specimen is overshadowed by the 
variation of group velocity due to inhomogeneity of the ma- 
terial and described in Sec. IV C. 

IV. DETERMINATION OF ELASTIC CONSTANTS 

A. Transversely isotropic zinc 

Two of the authors” determined five elastic constants of 
hexagonal zinc accurately from the group velocity data mea- 
sured in two principal directions. They are listed in Table I. 
For zinc we simplify the four index notations [OOOl] and 

TABLE I. The elastic constants of zinc obtained by various methods in units of GPa. 

Method 
No. 

1 
2 

Method used 

Ref. 27 
L and T V, in two principal directions 

and OL V, at 5=47.3” 

Equation used Cl1 

Eqs. (11, (2), (34) 163.75 
Eqs. (l), (2), (16), (17) ... 

Elastic constant (GPa) 

c33 C44 Cl2 Cl3 

62.93 38.68 36.28 52.48 
. . . . . . . . . 52.5 

3 L and T V, in two principal directions Eqs. (l), (2). (16), (17) .*. *.. ..* ... 51.3 
and IQT Vg at &= 11 .O” 

4 L and 7’ V8 in two principal directions Eqs. (l), (2), (16). (17) ... . . . . . . . . . 53.3 
and SQT V, at <= 11 .O” 

5 QL and PT V, in the symmetry plane Eqs. (2). (5), (9) . 163.7 62.6 38.8 37.3 52.4 
and nonlinear-least-squares fit Eqs. (30)~(33) 

6 QL, QT, and PT Vg in the symmetry Eqs. (6), (7). (9) 164.1 62.6 38.8 37.3 52.2 
plane and linear-least-squares fit Eqs. (30)-(33) 
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FIG. 5. The (010) section of group and phase velocity surfaces in zinc, 
where the measured group velocity data are juxtaposed. 

(0001) used for a hexagonal crystal to [OOl] and (OOl), re- 
spectively, which are appropriate for transversely isotropic 
media including fiber-reinforced composite materials. Using 
the elastic constants of Ref. 27 and Eqs. (9), (15), and (17) 
corresponding to a hexagonal medium, the group velocities 
of PI?, QL, and QT modes propagating in various directions 
are calculated and the (010) section of these group velocity 
surfaces is drawn with solid lines in Fig. 5, which also shows 
for comparison the same section of phase velocity surfaces 
drawn with dotted lines. The phase velocities of various 
modes are calculated using Eqs. (3) and (5). The measured 
group velocity data, which were obtained with the configu- 
rations shown in Figs. 3 and 4 and are described in detail in 
Ref. 17, are juxtaposed for comparison in Fig. 5. The direc- 
tional range 5 of the measured group velocities is within 58” 
for the QL mode, 45” for the PT mode, and 25” for the QT 
mode. For group velocity directions &’ larger than 25” lying 
outside the cuspidal region, a QL mode reflected from the 
side walls of the finite-sized zinc specimen arrives ahead of 
the slow QT (SQT) ray, smearing the arrival of the SQT ray 
in the detected signal and making an accurate determination 
of the SQT group velocity very difficult. 

The (010) section is a typical representation of the zonal 
planes belonging to the [OOl] zone in zinc and [OOl] is the 
symmetry direction in zinc. In Fig. 5, QL, FQT, IQT, and 
SQT stand for the quasilongitudinal, fast quasi-transverse, 
intermediate (speed) quasitransverse, and slow quasitrans- 
verse, respectively. These modes are all polarized in a sagit- 
tal plane coinciding with the [OOl] zonal plane. The PT de- 
notes a pure transverse mode, which is SH polarized normal 
to the zonal plane and parallel to the (001) basal plane. Using 
the analytical formulas found in Ref. 21, the direction of the 
cuspidal edge P, shown in Fig. 5 is calculated to be 21.54” 
from the [OOl] direction. 

1. Determination of mixed index elastic constant 

Experimental determination of all the elastic constants 
including the mixed index elastic constants Cl2 and C,, by 
the measurement of phase velocities is excellently described 

in Refs. 4 and 5. Using Eqs. (16) and (17) derived for both 
QL and QT modes, we now demonstrate how the mixed 
index elastic constant C,, can be determined from the group 
velocity data measured along an arbitrary direction in the 
zonal plane. The values of four elastic constants, Ctt 
= 163.75 GPa, C,,=62.93 GPa, CM=38.68 GPa, Ct,=36.28 
GPa, identical to those of Ref. 27 listed in Table I, are ob- 
tained from the group velocity data of pure longitudinal and 
pure transverse modes measured in two principal directions 
by using the expressions corresponding to Eqs. (1) and (2) 
for a hexagonal medium and relation (22). We take first the 
QL group velocity Vg =3.910 mm/~ measured in the direc- 
tion of 5=47.3” outside the cuspidal region shown in Fig. 5. 
Simultaneous equations of Eq. (16) with the negative square 
root and Eq. (17) are applied to the QL mode to solve for 
p=tan 0 and D. They yield no real solution for p; however, 
Eqs. (17) and (16) with the positive square root yield 
f3=17.7”, D=59.4 GPa, and Cta=52.5 GPa in excellent 
agreement with the Cta=52.48 GPa of Ref. 27 listed in Table 
I. Next, we take the IQT mode group velocity V,=2.293 
mmlps measured in the direction [= 11.0” inside the cuspi- 
da1 region. Equation (16) with the positive square root and 
Eq. (17) for the QT mode yield two solutions: 19= 1 l.l”, 
D=37.9 GPa, and C,,=37.9 .GPa; 6= - 18.9”, D =62.2 GPa, 
and C1,=51.3 GPa. As indicated in Fig. 2 and also by Eq. 
(27), the direction of the wave normal 0 at the point of a 
group velocity surface is in the direction of the outward gra- 
dient at that point, which for the IQT branch in Fig. 5 points 
in the negative direction (or to the left-hand side) from the 
[OOl] direction. The former set of values for the positive 0 is 
therefore discarded. The latter value 51.3 GPa of Cl3 com- 
pares well with the above-quoted value 52.48 GPa within 3% 
error. The values of C,, obtained from the QL group velocity 
at 5=47.3” and the IQT group velocity at f= 11 .O” are, re-. 
spectively, listed in the no. 2 and 3 rows of Table I for com- 
parison. Similarly, using the measured SQT group velocity 
1.899 rnmlps at l=ll.O’, one obtains C,,=53.3 GPa, which 
is listed in the no. 4 row of Table I and falls within 1.6% 
from the C,, value of Ref. 27. The QL and FQT group ve- 
locities obtained near the symmetry direction [OOl] are not 
recommended for determination of C ts, unless they are very 
accurately measured, say, with an error of about 0.01%. For 
these QL and FQT modes, the directions of the correspond- 
ing wave normals are also close to the symmetry direction. 
For small values of 13, dC,,ldV, is large and a small error in 
group velocity measurement results in a large error in the Cl3 
value. 

The mixed index elastic constant Cl2 can be also deter- 
mined from the PT mode group velocity, e.g., V,=2.523 
mm/ps measured in the direction of 5=37.9” outside the 
cuspidal region, using Eqs. (9) and (22). C,,=38.68 GPa, 
which was determined from the PT wave group velocity 
propagating in the [OOl] direction and is identical to the C, 
value of Ref. 27, is used in Eq. (9) to obtain C,,=36.3 GPa 
in excellent agreement with the Ct,=36.28 GPa listed in 
Table I. The latter value of Cl2 was obtained from the PT 
group velocity propagating in the basal plane. 

The determination of Cl2 or Cb6 from the group velocity 
of a SH polarized PT mode propagating in an arbitrary di- 
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rection in the zonal plane requires more substantial explana- 
tion. As mentioned in Sec. II and described in detail in Ref. 
17, the SH polarized group velocities have been measured by 
using the S PZT source and S PZT detector, which were both 
polarized in the same direction and situated on the opposite 
faces of a specimen. The S PZT source can be modeled as a 
monopolar source acting in a horizontal direction, for ex- 
ample, the direction 1 representing the [loo] on the surface. 
Any direction on the top surface plane (001) is identical to 
the [loo] in a transversely isotropic zinc. With a Heaviside 
step source acting at origin, the SH polarized PT mode dis- 
placement response, G,,(x,t), as a function of the detector 
position x and time t, is described by Every and Kim?* The 
SH motion caused by the QL mode arrival is a near-field 
effect, diminishing with the inverse square of the distance Y 
from a source to a detector and, consequently, it is difficult to 
observe in a far field. Y in our experiment is much larger than 
the dominant wavelength of the signal and therefore belongs 
to the far field. Indeed, it is observed that the SH motion 
caused by the QL mode arrival, being followed by a shallow 
and slowly changing slope in the displacement curve, is too 
weak to be detected by the pointlike S PZT detector located 
in the far field, which detects only the arrivals of various QT 
and PT modes. Within and without the cuspidal region the 
first arrivals detected by the S PZT detector are associated 
with the FQT and PT modes, respectively. The group veloci- 
ties obtained with these first arrivals outside the cuspidal 
region are plotted with diamond symbols in Fig. 5 and they 
fit well the theoretical PT curve calculated using Eq. (9). 
Recall that the SH mode group velocity measured at [=37.9” 
has been previously used to obtain the value of C12. 

2. Determination of elastic constants by statistical 
optimization 

Even though the measurements in different principal di- 
rections yield the most accurate determination of elastic con- 
stants, there may arise a situation in which faceting of a 
sample is not desired and theiefore the group velocity of 
some mode, say QT, can be measured in only one principal 
direction. Such is often the case in the nondestructive testing 
of a composite plate, where QL and QT mode group veloci- 
ties in many different directions are obtained by scanning the 
top surface preferably in the principal-axis direction. Sup- 
pose now that pure longitudinal and transverse wave speeds 
in a direction on the basal plane of zinc cannot be obtained 
and consequently the values of the elastic constants Cl1 and 
C,, are not directly available. What we have on hand is the 
group velocity data shown in Fig. 5, which have been ob- 
tained by scanning the top surface of a (OOl)-oriented zinc 
specimen along the straight line passing through epicenter. 
Given these group velocity data, is it possible to determine 
all five elastic constants of zinc? The answer is definitely yes 
and next we show how they can be uniquely determined. 

First, ‘both C33 and C, can be determined from the 
group velocities of pure L and T modes propagating along 
the symmetry direction [OOl]. Then using the value of CM 
and Eq. (9), Cl2 can be determined from the PT mode group 
velocity data shown in Fig. 5, as discussed in the previous 
subsection. Finally, both Cl1 and Cl3 can be determined 

through Eqs. (16) and (17) choosing any combination of two 
among the QL and QT group velocity pairs in the same or a 
different direction and among the two QL or two QT veloci- 
ties in different directions. This last analytical approach is 
considerably complicated and sometimes unwieldy. Given 
many group velocity data in various directions, one may 
even try a nonlinear-least-squares goodness fit to Eqs. (16) 
and (17) for determination of either all five elastic constants 
or just two elastic constants of Cl1 and C13. The nonlinear- 
linear-squares method depends on good initial estimates of 
parameters, the convergence of which to the optimal value is 
not always guaranteed. 

The difficulties arising in the above situation can be cir- 
cumvented by using the statistical optimization technique de- 
scribed in Sec. II E. The elastic constants can be obtained 
more conveniently and efficiently through the statistical ap- 
proach. The accurate conversion of group velocity data into 
the corresponding phase velocity data is most essential for 
successful implementation of this method. Equations (30) 
and (31) indicate that the accurate &version depends not 
only on the accurate value of group velocity but also on its 
derivative with respect to its directional angle 5 as well. This 
means that a polynomial form we choose for fitting the QL 
and various QT branches should fit the data very well not 
only globally but also locally. The group velocity curve 
changes both its slope and curvature continuously in the 
whole range -9O”<l<90“, as can be seen in Fig. 5. Poly- 
nomials of degree equal to or more than 4 are found to work 
very well for zinc. For simplicity and convenience we 
choose a polynomial of degree 4 (N=4) in Eq. (32) to fit the 
group velocity data. For a group velocity data curve that 
changes its curvature appreciably in the entire experimental l 
range, a polynomial of degree higher than 4 may be pre- 
ferred. For the PT group velocity data a polynomial fitting is 
not necessary, as explained in Sec. II E and, instead, Eq. (9) 
is used to fit the PT data outside the cuspidal region in Fig. 5. 
Note that because of mirror symmetry across the symmetry 
axis [OOl], the IQT and SQT branches are in fact one 
smoothly joining branch, when their reflected mirror images 
are extended across the symmetry axis. The QL, FQT, and 
IQT-SQT group velocity data are fitted into the polynomial 
of degree 4 to determine its coefficients by a linear-least- 
squares method. 

The constant coefficients co associated with the QL and 
FQT branches and determined by the curve fitting are related 
to the elastic constants by 

d&= c33 3 P(&QT= c44 * (33) 

Once all the polynomial coefficients are determined, the elas- 
tic constants C,, and C, are obtained according to Eq. (33). 
Then, one obtains the quantities C,, f = C33 t C,, and the 
phase velocities V(0) of QL and QT modes using Eqs. (29)- 
(31). Next, the quantities on the left-hand side of Eqs. (6) 
and (7) versus sin2 B are calculated and they are fitted into 
these equations by the linear-least-squares method to deter- 
mine C ll+=C11+C44, C13+=C13+%; CH, and Cl,. 
Figure 6 shows that the calculated data p(V&+V&), plotted 
versus sin2 0, lie closely to the straight line, the slope of 
which equals C, 1+ - C33+r as Eq. (6) indicates. Because of 
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FIG. 6. p(V&+V&) vs sin’ 0 calculated from the group velocity data. The 
ordinate is in units of kg/(m 9. 

rather complex mapping between the directions of group ve- 
locity and wave normal, the converted QL and QT phase 
velocities lie in the 19 range less than 35”. Using the value of 
C, found above and Eq. (22), Crz is obtained from the PT 
group velocity data by the linear-least-square fit into Eq. (9). 
All five elastic constants of zinc thus determined by the sta- 
tistical optimization technique are listed in the no. 6 row of 
Table I and compare very well with those of Ref. 27 in the 
same table. 

Kim and Sachse27 derived an analytic equation that re- 
lates C t3 +. = Ct 3 -I- C,, to the constant coefficient co obtained 
from the curve fitting of the IQT and SQT group velocity 
data and it is expressed as 

~~13+~44~2=~11~33+~424-P~~~~~~+~44~ 

+2[c11c44(c33-Pc~)(c44-Pc~)11’2. 

(34) 
The coefficient co obtained from the group velocity data of 
the IQT-SQT branch is 2.051 mm/,us. Using the values of 
C3s, CM and C,, obtained from the curve fitting and Eqs. 
(33) and (6), one obtains from Eq. (34) Ct3=52.8 GPa, 
which is in excellent agreement with Cl3 of Ref. 27. A simi- 
lar equation to Eq. (34), obtained by interchanging indices 1 
and 3, applies to transversely isotropic media that have a 
cusp of the QT mode around the basal plane. 

B. Cubic silicon 

A majority of crystals found in nature is solidified in a 
cubic crystal form. Here we illustrate a determination of the 
elastic constant Cl2 of cubic silicon using Eqs. (16) and (17) 
adapted to a cubic medium and a QL mode group velocity 
measured in a direction lying in the (010) plane. For t=O 
that corresponds to 8=0, Eqs. (15) and (17) together with the 
relation (19) yield pVi= Cl 1 and pVi = C44 for the pure L 
and T modes propagating along the (100) direction, respec- 
tively. Similarly, in Eqs. (15) and (17), we replace C,, by K 
in Eq. (20) and C rt+ by K, in Eq. (20) and use for 5 
=90” relation (19) to find the following relations: 
pV2=K=(Ctt+C,,+2C,,)/2 for the pure L mode and 
pVi=(C,,-Cl,)/2 for the PT mode propagating in the 
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FIG. 7. The (010) section of the group and phase velocity surfaces in sili- 
con. 

[ 1 lo] direction. The same relations in the (110) direction can 
be obtained for 5=45” using Eqs. (15) and (17) and relation 
(19). The values of elastic constants Crr=165.7 GPa and 
C,=79.56 GPa are obtained from the pure L and pure T 
group velocity data measured in the [OOl] direction and the 
density of 2332 kg/m3. Another independent measurement of 
pure L and pure T modes propagating in the [llO ] direction 
yields Ct,=63.90 GPa. Using these values of elastic con- 
stants, the Monte Carlo generated (010) section of group 
velocity surfaces is plotted in Fig. 7, which also shows the 
phase velocities for comparison. It displays very complex 
folded features of the QT mode group velocity sheet around 
the cubic axis. The QT group velocity sheet in Fig. 7 consists 
of that of the slow transverse (ST) modes that are sagittally 
polarized and that of the fast transverse (FT) modes that are 
perfectly SH and nearly SH polarized. An enlarged view (not 
shown here) of the QT folded sheet manifests one cusp aris- 
ing due to the wave normals lying in the (010) plane and the 
other three foldings due to the wave normals oriented in the 
nonsymmetry planes. l6 

The QL group velocity 8.83 rnm/ps is determined from 
the QL mode arrival indicated in the signal shown in Fig. 8, 
which is detected by a miniature capacitive transducer lo- 
cated at a distance of 25 mm (5=26.9”) from epicenter in the 
[loo] direction on the bottom surface of a (001) silicon 
specimen. A broadband ultrasonic wave is generated by a 
capillary fracture source located at origin on the top face. We 
use D with a positive square root in Eq. (16) and Eq.. (17), 
together with relation (19) for a cubic medium, Cti= 165.7 
GPa, C,=79.56 GPa, V,=8.83 mm/,&, and p=2332 kglm3, 
to obtain only one real value of Cr2=64.4 GPa, which is in 
good agreement with the C,,=63.9 GPa mentioned above. D 
with a negative square root in Eq. (16) and Eq. (17) has no 
real root for p=tan 6. Using C,,=63.9 GPa with the same 
values of C,i and CM as above in Eqs. (15) and (17) predicts 
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FIG. 8. A displacement signal detected by the capacitive transducer at a 
distance of 25 mm from epicenter in the [lOO] direction on the bottom 
surface. 

the QL group velocity equal to 8.827 mm/pus in the direction 
of the detector. Note that an error as small as 0.032% in 
group velocity measurement results in an error as large as 
0.79% in the elastic constant C,,. Using the arrival of the 
slow QT mode marked as ST in Fig. 8 with Eqs. (16) and 
(17) leads to a similar result. A small dimple found around 
9.5 ps in the signal is caused by the arrival of nearly SH 
polarized FT modes which travel at a group velocity indis- 
tinguishably close to (C&P)“~. Note that using the arrivals 
of QL, FT and ST modes in one directional signal, it is 
possible to determine all three elastic constants of cubic sili- 
con. It is shown by Kim, Every, and Sachse21’2g that all three 
elastic constants of a cubic medium can also be determined 
from the L or QL group velocities measured in three differ- 
ent directions lying in the symmetry planes and that all three 
elastic constants of silicon can be easily and accurately de- 
termined from one broadband signal propagating in the (100) 
direction. 

C. Orthotropic fiber-reinforced plate of PEEK 

A carbon-fiber-reinforced PEEK plate specimen shown 
in Fig. 9 has the density of 1500 kg/m3. Recall that phase and 
group velocities coincide along the principal symmetry di- 

I------19: mm- -+I+ 
v 

I 1 A In 

x,i 

* Capillary Fracture or S PZT Source; v L or S PZX Detector 

FIG. 9. Material coordinate axes and various configurations of the detector 
and scanning sources used for a PEEK plate. 

rections and they have extremal values along these direc- 
tions. Note also that QL, QT, and SH polarized PT modes 
exhibit a mirror symmetry across the symmetry planes. Us- 
ing these properties of the group velocity patterns obtained 
for various source-to-detector orientations, it is observed that 
the PEEK specimen possesses orthotropic symmetry for 
which the xi, x2, and x3 directions shown in Fig. 9 are those 
of three principal axes. It has the maximum and minimum 
longitudinal wave speeds along the x1 and x3 directions, re- 
spectively. 

With the specimen anisotropy determined as above, we 
are now at the stage of finding all the nine elastic constants 
of the orthotropic specimen. The several L group velocities 
along the x3 direction are measured by breaking the glass 
capillary on many different spots of the top surface and plac- 
ing the L PZT detector at epicenter on the bottom face. 
About several percent nominal variation in the wave speeds 
is observed because of inhomogeneity of the material. The 
average value of the wave speeds is used to calculate the 
elastic constant Cs,=10.7 GPa, according to Eq. (1). Simi- 
larly, with the L PZT detector at origin on the top surface, 
C,,=28.5 GPa and C,,=15.2 GPa are obtained from the 
average of the pseudo-L wave speeds in the x1 and x2 direc- 
tions, respectively. These L waves are launched from the 
capillary fracture sources scanned in the xi and x2 directions 
on the top surface. Since the arrival time of the L or QL 
modes generated by the capillary fractures is unambiguously 
identified as the first arrival of the signal, we omit a display 
of the signal here. 

The pure index elastic constants C& and C,, can be 
determined by transmitting the plane waves of transverse 
mode along the x3 direction, which are polarized in the x2 
and xi directions, respectively, and by measuring their wave 
speeds. These plane-wave modes are not used in this experi- 
ment. Instead, we determine the pair of C, and Ch6 values 
and the pair of C,, and Ch6 values by fitting the SH polarized 
PT group velocities obtained in the x1x3 and ~2x3 planes into 
a form of Eq. (9). A pointlike S mode PZT detector with a 
sensing element of diameter 0.75 mm is positioned at origin 
on the bottom face. First, a line-type S mode PZT source 
with an activation area that is 5 mm long and 0.75 mm wide 
and polarized in the long 5 mm direction, is scanned along 
the x1 direction across the epicenter on top surface in the xi 
range from 0 to 7.5 mm. The choice of the LS PZT source, in 
lieu of a PS PZT source, is simply a matter of convenience in 
identifying the PT mode arrival by enhancing the ratio of SH 
motion associated with the PT arrival to that associated with 
the arrivals of other modes polarized in the sag&al plane. 
The source polarization is always maintained in the x2 direc- 
tion. Because of a relatively thin sample thickness of 3.26 
mm, the detector positions correspond to a near field and 
thereby a SH motion ensuing the first arrival of the QL mode 
is observed in the detected signal, in contrast to the corre- 
sponding case in zinc discussed in Sec. BI A, where the 
detector is positioned in the far field and the QL mode arrival 
is undetectable. However, the first large amplitude in the de- 
tected signal is found following the arrival of the PT mode 
that is SH polarized normal to the sagittal plane. A typical 
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FIG. 10. A typical off-epicentral SH signal detected by the S PZT trans- 
ducer located in the x2x3 plane with a LS PZT source. Both source and 
detector are polarized in the x1 direction. 

wave form recorded is displayed in Fig. 10, where PT indi- 
cates its arrival time. Detailed description of the PT arrival is 
given elsewhere.28,30 The group velocities obtained for vari- 
ous source locations are fitted into Eq. (9) to obtain the val- 
ues of CU and Cc6. Similarly, the values of C5s and Cc6 are 
obtained with the LS polarized in the xi direction and 
scanned in the x2 direction across the epicenter. The obtained 
average values of the pure index elastic constants are CM 
=2.23 GPa, C5s=2.41 GPa, and C,,=5.71 GPa with several 
percent standard deviation. 

The mixed index elastic constant is calculated from the 
QL group velocity data obtained along arbitrary directions in 
the principal planes, using Eqs. (16) and (17). The capillary 
fracture source and L mode PZT detector are used for this 
purpose. The average of several C,, values, 7.70 GPa, is 
obtained from the pseudo-L wave group velocity data in 
various directions with both source and detector located on 
the top surface. The averaged Cl3 value equal to 6.00 GPa is 
obtained from the QL group velocity data measured along 
several different directions in the x1x3 plane with the source 
and detector located on the top and bottom sides, respec- 
tively. Finally, the averaged C23 value equal to 7.65 GPa is 
obtained with the source and detector located in the ~2x3 

plane on the opposite sides of the specimen. The nine elastic 
constants of the carbon fiber PEEK specimen are listed in 
Table II. 

The calculated Young’s modulus in the x1 direction, ob- 
tained using the above elastic constants of the PEEK speci- 
men, is 24.0 GPa, which compares well with the Young’s 
modulus 23.0 GPa obtained by the static tension test per- 
formed in the same direction. 

TABLE II. The elastic constants of the orthotropic PEEK plate in units of 
GPa. 

Cl1 G2 c33 C44 c55 C66 Cl2 Cl3 c23 

28.5 15.2 10.7 2.23 2.41 5.71 7.70 6.00 7.65 

.The specimen material is not uniformly homogeneous 
everywhere and anisotropy varies slightly from point to point 
from the overall orthotropic symmetry. Moreover, because of 
the relatively thin sample thickness, the small aperture 
source and detector are not exactly pointlike. Therefore, the 
variations in the obtained elastic constants are much larger, 
particularly in the mixed index elastic constants that show 
the variations as large as 20% from the average value, as 
compared with those of zinc and silicon crystalline speci- 
mens,. The method of using small sized source and detector 
is not particularly well suited for measurement of all the 
elastic constants of a thin plate specimen. Here we have 
merely shown an analytical methodology for determination 
of all the elastic constants of an orthotropic plate. 

V. DISCUSSION 

Pure index L moduli, such as C,, ,’ C22, and C33r are 
most easily obtained with least errors, from the L group ve- 
locities, because their arrival in the detected signal is unam- 
biguously found at the point from which the signal jumps 
from the noise level. For the same reason, the pure index 
shear moduli, such as C,, Cs5, and Ce6, can be easily de- 
termined for a thick specimen oriented in the principal plane, 
where a detector can be located in the far field. Care should 
be taken to avoid a propagation direction inside the cuspidal 
region, because the first arrival in the signal detected only 
outside the cuspidal region corresponds to the SH polarized 
PT mode. For a relatively thin specimen the PT arrival can 
be determined with a modicum difficulty, as discussed in 
Sec. IV C with a PEEK specimen. 

The QL and QT modes are coupled in a broadband sig- 
nal and they are polarized mutually perpendicular to each 
other in the same sagittal plane. For determination of mixed 
index elastic constants, such as Ct2, C23, and Cis, it is 
highly recommended to choose the arrival times of the QL 
mode for its easy, unambiguous identification. Except for the 
displacement signal detected by the displacement transducer 
such as a capacitive transducer, the unambiguous identifica- 
tion of the QT mode arrival is generally quite difficult in a 
broadband signal detected by a thin disk-shaped PZT, partly 
because of the effect of lingering QL mode and in some 
directions a head wave superposed on the QT mode and 
partly because of the ringing of the detecting transducer. 
There is another reason why the QL group velocity is pre- 
ferred: There is no folding of the QL ray surface where the 
cusp is absent in all directions, because the corresponding 
QL slowness surface is everywhere convex for all media.3* 
All the points on the symmetry plane of the QL slowness 
surface map into the corresponding symmetry plane of the 
QL group velocity surface, and vice versa; however, the con- 
verse is not true for the QT modes of anisotropic media with 
symmetry lower than transverse isotropy. Depending on the 
direction, the QT slowness surface is concave, convex, or 
transitional between them. Some points of zero Gaussian 
curvature lying outside the symmetry planes of slowness sur- 
face may have their caustics mapping across the mirror sym- 
metry plane, while others may map into a cusp on the sym- 
metry plane of the corresponding group velocity surfaces, 
where Eqs. (13)-(17) for the QT mode are no longer valid. 
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For a zinc specimen the arrivals of QL and QT modes 
are easily identified, because a broadband signal is excited 
by a Heaviside step point source, whose temporal response is 
very well understood’7’28*32 and detected by the capacitive 
displacement sensor. The determination of elastic constants 
C,r and Cl3 is greatly facilitated by converting many group 
velocity data into the corresponding phase velocity data and 
then using Eqs. (6) and (7). When a piezoelectric detector is 
used, only the QL group velocity data are easily and accu- 
rately obtained, which can be converted into QL phase ve- 
locity data V(6’) through Eqs. (29)-(32). These phase veloc- 
ity data may be fitted into Eq. (5) by using a more 
complicated nonlinear-least-squares method to obtain the 
three elastic constants C,,, CM, and Ct3. The nonlinear- 
least-squares method critically depends on the initial esti- 
mates of the elastic constants and its convergence is not al- 
ways guaranteed. The determination of the elastic constants 
by the nonlinear-least-squares technique will be greatly fa- 
cilitated if the value of either C,, or Cu or both are known 
by other methods, e.g., using either a surface skimming 
pseudo-l wave along the [loo] direction on the top surface 
of a zinc specimen or the S mode plain wave traveling in the 
[OOl] direction. In the case of zinc, Cs3 can be determined 
with the QL group velocity data fitted into Eq. (32) and then 
using Eq. (33), and CM is obtained with the PT group veloc- 
ity along the [OOl] direction. The nonlinear-least-squares 
method applied to the QL phase velocity data of zinc yields 
C,,=163.7 GPa and Ct3=52.4 GPa. All these values are 
listed in the no. 5 row of Table I and in excellent agreement 
with those of Ref. 27 in the same table. Similarly, with the 
knowledge of C33 as determined above and Cri identical to 
those of Ref. 27, one obtains C@=40.0 GPa and Ci,=49.3 
GPa in fair agreement with the corresponding values of Ref. 
27. 

VI. CONCLUSIONS 

Various novel techniques have been demonstrated that 
allow us to determine the elastic constants of an anisotropic 
solid from the measured group velocity data of elastic waves 
traveling along arbitrary directions in the symmetry plane 
within and without a cuspidal region. The first technique 
used for determination of mixed index elastic constants is 
entirely analytical, being based on the equations recently de- 
rived by one of the authors.2’ The usefulness of this analyti- 
cal technique has been illustrated with the exemplary speci- 
mens of transversely isotropic zinc, cubic silicon, and 
orthotropic PEEK. The other techniques are indirect proce- 
dures, whereby the experimental group velocity data are first 
converted into the corresponding phase velocity data via 
polynomial expansions. In case that the phase velocity data 
V(0) of both QL and QT modes are calculated for the set of 
the same angles 6, one can rely on the linear-least-squares 
optimization to accurately determine the relevant elastic con- 

stants. When only either of them is obtainable, we need to 
use the nonlinear-least-squares optimization procedure that 
fit the data into Eq. (5) for a similar purpose. The nonlinear- 
least-squares technique depends on the initial estimates of 
parameters and will be greatly facilitated if the number of the 
parameters to be determined by the technique is minimized. 
It is shown that all the elastic constants of zinc determined 
by the various methods compare very well with the corre- 
sponding elastic constants of Ref. 27, which were accurately 
determined. 
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