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This paper presents various closed-form analytic formulas that relate the group velocity of elastic
pulses propagating in an arbitrary direction of the symmetry planes of elastic media with orthorhombic
or higher symmetry to their elastic constants. Simple equations relating the direction of a group velocity
to that of the corresponding wave normal are derived for both quasilongitudinal and quasitransverse
modes. A forward solution to obtaining the elastic constants from the group-velocity data on the sym-

metry planes by using these relations is illustrated with examples of transversely isotropic zinc and cubic
silicon crystals. Both numerically simulated and experimental data are used to check the derived rela-
tions and to demonstrate their usefulness.

I. INTRODUCmrON

The elastic constants of materials are conveniently ob-
tained by measuring the phase velocities of elastic waves
propagating in various directions of a medium. The rela-
tions between the elastic constants and the phase velocity
in an arbitrary direction of the medium are found in the
solution of the Christoffel equation. ' For an elastic
pulse propagating at a group velocity, no analytical equa-
tion is found in a closed-form in a general propagation
direction of the medium. However, on the symmetry
axes of media, the group and phase velocities coincide
with each other and this yields some valuable analytic
equations relating the group velocities with the elastic
constants. While the measurements on the symmetry
axes using both longitudinal (L) and transverse (P modes
are sufficient to obtain all three elastic constants of a cu-
bic medium for either group or phase velocities, addition-
al measurements are required in a nonsymmetry direction
to determine all the elastic constants of media with hex-
agonal (transversely isotropic} or lower symmetry. This
poses a difficulty with group-velocity data in the deter-
mination of elastic constants for the aforementioned
reason.

There are other important reasons why we are con-
cerned about the group-velocity measurement. Most
acoustic emission (AE} sources found in nature such as
crack generation (fracture), phase transformation, fric-
tion, dislocation motion, spark discharge, etc. are tran-
sient and the resulting elastic waves from these sources
propagate at a group velocity. Many simulated AE
sources recently used, both in laboratories and for non-
destructive materials characterization and inspection,
generate elastic pulses propagating at group velocities.
Some examples of these simulated AE sources are
piezoelectric elastic pulse excitation by a high-voltage
electronic pulse generator, thermoelastic pulse generation
by a high-power laser or x-ray pulse, and fracture of
capillary or pencil-lead on the surface of a specimen and
so on.

In order to relieve this diSculty associated with the
group-velocity measurements we present in this paper the

closed-form analytic relations between the group velocity
of an elastic pulse of either quasilongitudinal (QL) or
quasitransverse (QT} mode propagating in an arbitrary
direction of the symmetry planes of media with ortho-
rhombic or higher symmetry and the elastic constants of
the propagating medium. On these symmetry planes one
of the transverse waves is pure transverse (PT), and the
analytic relations between the group velocity of the PT
mode and the shear rnoduli of the medium are easily
found. ' These analytic group-velocity expressions on the
symmetry planes together with those on the symmetry
axes of the medium are in most cases more than sufficient
to 6nd all the elastic constants. This is not unduly res-
trictive in scope, because a great majority of materials
found in nature belong to orthorhombic or higher-
symmetry groups, and even in the phase-velocity mea-
surements for the determination of elastic constants there
exists overwhelming reliance on the data of symmetry
axes and planes due to the associated simple analytic for-
mulas. There are other great advantages: due to at least
an associated mirror symmetry, the variation of the wave
speed of some modes about the symmetry axes or planes
is minimal and therefore the error associated with a
misorientation of the sample in the determination of the
elastic constants is also minimized; moreover, anisotropic
samples such as single crystals and composites are easily
grown along a symmetry axis or fabricated in this direc-
tion. The symmetry direction or the symmetry plane is
easy to identify by microscopic observations, x-ray or
electron diffraction analysis.

Even though these equations are slightly more cornpli-
cated than the corresponding phase-velocity formulas,
their solutions will be shown to be easily found with the
aid of a hand calculator or computer algebra such as
found in Ref. 3. Useful relations between the directions
of a group velocity and the corresponding wave normal
in the symmetry plane are derived. A forward solution to
obtaining the elastic constants from the group-velocity
data on these symmetry planes is illustrated with exam-
ples of transversely isotropic zinc and cubic silicon crys-
tals, the QT modes of which have cusps around the sym-
metry axis. Both numerically simulated and experimen-
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tal data are used to check the derived relations and to
demonstrate their usefulness. It is shown that the solu-
tion is found not only for the QL mode but also for the
QT mode within and without the cuspidal region.

II. THEORY

A. Outline of existing analytic formulas
for orthorhombic symmetry

To give a general outline of analytic formulas relating
the wave speed in a given direction with the elastic con-
stants of the medium, we start with a medium with ortho-
rhombic symmetry. %e denote the three orthogonal
principal axes of the medium by x&, x2, and x3 direc-
tions. The orthorhombic medium is characterized by
nine elastic constants: C», C22, C33 C44 C55 C66, C~2,
C)3 and C23. The relation between the phase velocities
and the elastic constants of the medium is found from the
solution of the Christoffel equation'

deter, „—p V'S,„~=0,

relations, the longitudinal moduli C&, C22 and C33 and
the shear moduli C44, C55, and C66 can be obtained from
measurement of the wave speeds of L and T modes prop-
agating in the x &, x 2, and x 3 directions, respectively.

The shear moduli C44, C55, and C66 and the mixed-
index moduli C,2, C», and C23 can be obtained from
measurements of the wave speeds traveling in an arbi-
trary direction in the symmetry planes, i.e., x,x2, x „x3,
and x2x3 planes. For waves traveling on these planes the
basically identical relations between the elastic constants
and their speed can be found by the proper rotation of in-
dices. Therefore, we take a wave traveling, for example,
in the x,x3 symmetry plane with its wave normal n and
group velocity V~ oriented at angles 8 and g, respective-
ly, to the x3 axis, as depicted in Fig. 1. Because of the
reflection symmetry of the x,x3 plane across the x, axis
for media of orthorhombic or higher symmetry, we re-
strict without loss of generality the range of both g and 8
between —90' and 90', that is, —90'~ (,8 ~ 90'. Because
of the mirror symmetry across this plane, the following
identities hold

(6)
where I,k

=—C;JkInj nI is the Christoffel tensor, n the wave
normal, p the density of the medium, V the phase veloci-
ty, and 5,k the Kronecker delta. Defining the slowness s
as

Using Eq. (6), Eq. (1) can be factored to yield

(I —pV )[(I „—pV )(I —pV ) —I, )]=0 . (7)

s =n/V, (2)
The use of the relations n, =sin0 and n3=cos8 in the
first term on the right-hand side of Eq. (7) yields

,SV—:V co=V V=
g k n (4)

where k=(2'/A, )n is in the direction of the wave normal
n and A, is the wavelength. The Christoffel tensor I;k of
an orthorhombic medium is given by

r» ——n, C»+n 2C66+n 3C55
2 2 2

r22 ——n &C66+ n 2C22+ n 3C~,2 2 2

r33 n &C55+ n 2C44+n 3C33
2 2 2

I 23= n2n3(C23+ C44),

r» ——nIn3(C, 3+C55),

1,2=nIn2(CI2+C«) .

one obtains from Eq. (1) the equation of the slowness sur-
face

S=det~C(jkIs, sI —p5,„~=0 .

Let co denote the angular frequency. The group velocity
Vg can be found from the phase velocity or slowness sur-
face Sby the following relations

pV =C«sin 8+C44cos 8 (PT mode) .

The wave mode associated with Eq. (8) is a PT that is po-
larized in the x2 direction. Substituting Eq. (2) and the
last part of Eq. (4) into Eq. (8) yields for the group veloci-
ty

1

p p2
sin g cos g

66 44
(9)

x& [OOI]

Yg

Equations (8) and (9) may be used to obtain both C«and
C44 by measuring the wave speeds in at least two different
directions. By performing similar measurements in the
x,x2 and x2x3 planes, all the shear moduli C44, C55, and

C66 can be obtained.
Once the pure-index elastic moduli C, , C22 C33 C44,

On the x &, x2, and x3 principal axes of propagation the
phase and group velocities coincide with each other, and
both L and T waves on these axes are of pure mode. Sub-
stitution of Eq. (5) into Eq. (1) yields simple analytic
equations that relate these wave speeds to the elastic con-
stants of the medium. These relations are easily found in
the literature' and will not be written here. Using these

-xi [IOO] x
~

[loo]

FIG. 1. A schematic for the directions of group velocity and
wave normal in the x lx3 plane of an orthorhombic medium.
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C11+:C11+Css y

C33+ C33—C55

C13y =C13+Css .

(10}

(12)

The expression in the square bracket of the left-hand
side of Eq. (7) yields for the phase velocity of the QL and
QT modes

Css, and C66 are determined by the method described
above, the mixed-index elastic moduli C,2, C23, and C13
can be obtained from the phase-velocity measurement of
either quasilongitudinal (QT) or quasitransverse (QT)
modes propagating in the x,x2, x2x3, and x,x3 planes,
respectively. Again we take the case of a wave traveling
in the x1x3 plane. We define for simplicity of notation
the following identities A—:C11C33+Css —C13+

2 2

8 —=C11 C33 —2C13+2

D—:[(Cii tan 8—C33 ) +4Ci3+tan 8]' )0,
P, —:2C11Css tan 0+ 3 —p$3 C11+,2 —2

P3 =—A tan 0+2C33C55 p$3 C33+

Q—= Cii+tan 8+C33+ 2ps3
2 —2

(15)

(16)

(17)

(19)

velocity plane. The group-velocity sections that do not
correspond to the x1x3 plane of the slowness surface are
not of interest here and we deal with only those group-
velocity sections that correspond to the x1x3 slowness
plane.

We define here for simplicity of notation

(p V')' —(r„+r„)p V'+(r„r„—r'„}=0, (13)
where the quantity ps3 can be obtained from Eq. (14)
and expressed as

which can be solved for p V . The solution for the QL
and QT modes is 2ps3 C11+tan 8+C33+ +D (21)

2pV =C11+sin 8+C33+cos 8

+[(Cii sin 8—
C33 cos 8)

+4C sin 8cos 8]' (14)

The positive and negative signs in front of D in Eq. (21)
correspond to the QL and QT modes, respectively. D in
Eq. (17) is by definition always greater than zero. B in
Eq. (16}can be expressed in terms of D as

where the positive and negative signs in front of the
square root of Eq. (14) correspond to the QL and QT
modes, respectively. The above equation (14) relates the
elastic constant Ci3 to the phase velocity of the QL or
QT mode propagating in an arbitrary direction in the
x 1x 3 symmetry plane. Similar equations can be found
that relate C,2 and C23 to the phase velocity of the QL or
QT mode propagating in the x,x2 and x2x3 planes, re-
spectively. Thus, for an orthorhombic medium, all nine
elastic constants can be determined from the appropriate
phase-velocity measurements. However, this is not the
case with the group-velocity measurements, because the
corresponding analytic expressions that relate the
mixed-index elastic rnoduli to a group velocity are so far
unknown to the author. The next subsection deals with
the derivation of these analytic equations.

B. Analytic relation between group-velocity
and mixed-index elastic constants

1. General formulations

The group velocities corresponding to the points in the
x 1x 3 slowness plane can be calculated using the last part
of Eq. (4). Because of the mirror symmetry across the
plane, all the points in the x1x3 slowness plane will map
themselves on the x1x3 symmetry plane in the group-
velocity surface. However, except for a transversely iso-
tropic medium, the converse is not in general true, as is
well known in the theory of phonon focusing. ' Because
of the nonspherical, concave or convex shape of the QT-
mode slowness surface of an anisotropic medium, some
points that do not lie in the x,x3 section of the QT slow-
ness surface may map themselves into the x1x3 group-

(Ci, tan 8+C33 D) . —
2tan 8

(22)

Substitution of Eq. (21) into Eq. (20) yields the identity

Q=+D, (23)

$1P1
gi

Q

$3P3
g3

Q

(25)

The direction of the group velocity or the energy flux,
specified by the angle g, can be written as

Vg1 P1
tang = = tan8

Vg3 P3

The magnitude of the group velocity is given by

(27)

where the negative and positive signs correspond to the
QL and QT modes, respectively.

The group velocity of the PT mode propagating at an
angle g to the x3 direction is already described in Eq. (9).
The group velocity of both QL and QT modes can be
found analytically from the equation of the slowness sur-
face. For this purpose one derives from Eq. (13) the
equation of the QL and QT sheets of the slowness sur-
face,

S—C11C55$1+C33 C55$ 3 + A$1$3

p(Cii+s1 +C33+s3)+p 0 ' (24)

The application of the last relation in Eq. (4) to Eq. (24)
yields the group-velocity components given by
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2p2 + 2p2

pV,'=p(~gi+ Vg3) =
P

Substitution of Eqs. (29) and (30) into Eq. (27) leads to the
relationship between the directions of group velocity and
wave normal, given by

2

(P, tan 8+P3),
pQ'

which through Eq. (27) becomes

p2
p p2

ps3 Q cos g
(28)

2. Ql. mode

To proceed further, first we pay attention to the separate
case of the QL mode.

8 Ci i tan 0 C»+D
tang = tan8 8 tan 0—C33 C33+D

which through the use of Eq. (22) yields

D +2C»+D tan 6+C» tan 8—
C33

tang=
2 4 2tan8(D +2C»+ D —C» tan 8+C33 )

We rewrite Eq. (31) in the form

C» tan 9+tang(B tan 8—C33 )

(31)

(32)

P, =
—,'(B—C„ tan 8—C„+D),

P3 =
—,'(Btan 8—C33 C33+D ) .

(29)

(30)

For the QL-mode propagation the upper sign in front
of D is applied to Eqs. (21) and (23). The substitution of
Eq. (21) into Eqs. (18) and (19) yields

B tan—8+ ( C»+ tan8 —C33+ tang)D =0 . (33)

Equation (31) or (33) can be used to find the wave normal
corresponding to a given group direction lying in the
same symmetry plane, and vice versa. Equation (32) is
quadratic in D, the solution of which as a function of
tanO is written as

1
D(tan8) = [tan8 (C33+ tang —C»+ tan8)

1 —tan tan8

[tan 8(C33+tang —C»+tan8) —(1—tan (tan 8)(C~, tan 8—C33—)]' 'I . (34)

(Ci& tan 8—C33 2C33+D—D)—
8 cos gD (C»+ tan 9+C»+ +D )

(35)

The above equation, when D is substituted by the expres-
sion on the right-hand side of Eq. (34}, yields the group
velocity as a function of tan8. Usually, experimentally or
by other means as described in Sec. II A, the magnitude
of group velocity V, its direction g, Cii+ Cii C33+,
and C33 are known. Equation (35) can be solved to find

tan8, which makes D in Eq. (34) real and positive. Once
I

P, =
—,'(B —C„ tan 8+ C„+D ),

P3 =
—,'(B tan 9—C33 +C33+ D ),

8 —C» tan 0+C&&+D
tang =tan8 8 tan 0—C33 +C33+D

In the above equation we choose the region of tanO where
D is real and positive. Substituting Eqs. (21), (23), and
(30) into Eq. (28), we find finally the relation for the group
velocity,

I

the value of this tan8 is found, one can obtain the values
of D, B, C»+ and finally Ci3, using Eqs. (34), (22), (16),
and (12), respectively. On the other hand, given the
known values of all elastic constants of a medium, Eq.
(31) or (33) combined with Eq. (35) predicts the value of a
QL group velocity in any direction in the symmetry
plane.

3. QT mode

In the propagation of the QT mode, Eqs. (21) and (23)
are both determined with the lower sign in front of D.
The application of very similar procedures to those taken
in the QL mode yields

(36)

(37)

(38)

Ci, tan 8+tang(B tan 8—C33 ) B tan8 —(C»+ta—n8 —C33+tang)D=O,

D(tan8) = 1

1 —tang tan8

X [tan8(C»+tan9 —C33+tang)

+[tan 8(C„+tan9 —C33+tang) —(1—tan (tan 8)(Ci& tan 8—C33 )]'

(C» tan 8—C33 +2C33+ D D)—
8 cos gD ( C»+ tan 8+C33+ D }

(39)

(40)

(41)
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Equation (39) gives a relation between the directions of a
QT-mode group velocity and the corresponding wave
normal lying in the symmetry plane. Equations (39}and
(41) can be used to calculate a group velocity in an arbi-
trary direction on the symmetry plane, once all the values
of the elastic constants are known. In the case that C13 is
unknown, again among the roots of tan8 of Eq. (41) we
take only those that satisfy the condition D )0. Then D
is found by Eq. (40). Finally, the value of C&3 can be
determined in a way similar to the case of the QL mode.

4. Propagation of QL and QT modes
in other symmetry planes

a. Propagation in the xzx3 plane We .consider a trav-

eling wave with group velocity V and wave normal I at
angles g and 8 to the x3 axis, respectively. In this case
replace the subscript index number 1 in the notations of
the elastic constant C;, wave normal n;, and slowness s,.

by the subscript index 2, and C55 by C44, in all the ap-
propriate equations following after Eq. (9). With these
replacements made, Eqs. (33)—(35) for the QL mode and
Eqs. (39)-(41) for the QT mode can be applied to find the
root tan8 and the corresponding value of D. Once the
value of D is known, the mixed-index elastic constant C23
can be obtained by using the relations corresponding to
Eqs. (22}, (16), and (12}for each mode.

b. Propagation in the x,xz plane Cons.ider an elastic
pulse propagating with V and n at angles g and 8 to the

x1 axis, respectively. Replace first C55 by C66 and substi-
tute the subscript index 3 by 1 and the subscript index 1

by 2 in the notations of the elastic constant C,",wave nor-
mal n, , and slowness s; in all the appropriate equations
following after Eq. (9). With these replacements made,
the elastic constant C12 can be obtained in a similar way
as described for the QL and QT mode propagations in the
x2x3 or x 1x3 plane

C. Extension to other higher-symmetry groups

1. Tetragonal and cubic symmetry groups

The tetragonal symmetry groups are divided into two
groups: one group containing the class of 4, 4, 4/m sym-

metry that has C,6
= —Cz6&0, and the other group con-

taining the remaining higher-symmetry classes for which
C,6= —C26=0. The nonzero elastic constant C,6 of the

former class of tetragonal media can be eliminated by a
rotation about the x3 axis through an angle P given by

tan4$ =4C,6/( C» —C &z
—2C66 ), (42)

where the denominator E=C&1—C12 —2C66 indicates a
deviation from transverse isotropy. Equation (42) yields
two solutions of P, which are 45 apart. One may choose
either value of P to set new coordinate axes, which render

C,6 zero. Thus, with an appropriate choice of axes, every
class of the tetragonal groups has the same form of
elastic-constant matrix.

Nine different elastic constants of an orthorhombic
medium are reduced to six in the tetragonal group by the
identities

C11 —C22 p C13 C23 y C44. —C55 (43)

C11+ =C11+ 44 C11—= 11 C44

C12+ =C12+C44 y

D = [C (1—tan 8) +4C tan 8)'

11— 12+
2 2

=[Cf, (1+tan 8)—D ]/(2tan 8) .

(46)

(47)

Then, for QL modes propagating in the cubic faces, we
obtain

and to three in the cubic symmetry group by the relations

C11 —C22 —C33 p C12 C23 C13 p C~ —C55 —C66 .

(44)

a. Propagation in the x,xz, xzxz, or x,x3 symmetry
plane Ther.e is no distinction between the x,x3 and xzx3
planes for the tetragonal medium and no distinction be-
tween all three x1x2, x2x3, and x,x3 planes for a cubic
medium. The relations that hold for the symmetry planes
of an orthorhombic medium extend to the corresponding
symmetry planes with the substitution of Eqs. (43} and
(44} for tetragonal and cubic symmetry, respectively.

Because a great majority of crystals in nature belong to
the cubic group, we explicitly write down here the formu-
las for cubic symmetry. The directions of the group ve-

locity and wave normal, g and 8, are measured from any
cubic axes. There are only three distinct elastic con-
stants, C», C,z, and C44, as indicated in Eq. (44) for cu-
bic symmetry. We define

C» tan 8+tang(B tan 8—C» ) B tan8+C»+(ta—n8 —tang)D =0,

D(tan8) = 1

1 —tang tan8

X [C»+tan8(tang —tan8}+[C»+tan 8(tang —tan8) —C» (1—tan (tan 8)(tan 8—1)]'~ ],
(C), tan 8—C)) 2C»+D D)— —

Scos gD (C& |t+anz8C+, 1+D+)

Similarly for the QT modes propagating in the cubic faces, we find

C» tan 8+tang(B tan 8—C» ) B tan8 —C»+(tan8 —tang)—D=O,

(4&)

(49)

(50}

(51)
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1D(tanO)= IC&&+tanO(tanO —tang)+[C&&+tan 8(tanO —tang) —
Cf& (1—tan (tan 8)(tan 8—1)]'

(C» tan 8—C» +2C„+D—D )

8cos gD (C„+tan 8+C„+ D—)

(52)

(53)

nd —=n1+n 2 =2n1 =sin 8 . (54)

The corresponding slowness components sd and s3, and
the relation between them are, respectively,

In the above Eqs. (48)—(53) we choose the range of tanO
that makes D real and positive.

b. Propagation in the (n&, n&, n3) typ-e diagonal plane
Consider the elastic wave propagating in this diagonal
symmetry plane with group velocity V and wave normal
n at angles g and 8 to the X3 axis, respectively. Then,
n 3

=cos0 and we define nd, the base-diagonal component
of the wave normal, as

K:——,'(C„+Ci2+2C66),

E+ ——E+C44,

C33+ =C33+C

C13+ —
13 C44

33 +C44 C13+

8 =E C33 2C13+

D:—[(K tan 8—C» ) +4C f3+ tan 8]'i

=(K tan 8—2g fan 8+C )

(62)

(63)

(64)

(65)

(66)

and

sd =sinO/V, s3=cosO/V, Using these new notations, the solution for pV in Eq.
(59) is written as

sd /s3 tanO (55)

We begin with the tetragonal symmetry. The
Christoffel equation in this case can be factorized as

(r„—r„—pv')

X[(I —pV )(I „+I,—pV ) —21, ]=0. (56)

2p V =E+ sin 0+C33+ cos 8

+[(K sin 8—
C33 cos 8)

+4C sin Ocos 8]'

from which one finds

2ps3 E+ tan 0+C33++D .

(67)

(68)
The first factor on the right-hand side of the above equa-
tion yields the relation

p V'= rtd(C „—C» )/2+ n 3Cq4 (57)

for the PT wave polarized in the [n„n&,0] direction nor-
mal to the propagation direction. The corresponding
group-velocity section in the V 1= V 2 plane is given by

sin g cos g (58)
(C» —Ci2 )/2 C4

1

2
pVg

which can be used to determine the elastic constants
(C„—C,z)/2 and C44 by measuring the group velocities
of the PT waves propagating in at least two different
directions. The terms in the square bracket of Eq. (56)
result for QL and QT modes in the relation for phase ve-

locity

(p v')' —(r„+r„+r„)pv'

+I 33(I „+I,2)
—2I f, =O . (59)

To simplify notations, we introduce the quantities defined
by

In Eqs. (67) and (68) the positive and negative signs in the
+ symbol correspond to the QL and QT modes, respec-
tively. 8 in Eq. (65) is written in terms of D and tanO as

B=
~

(K tan 8+C33 —D2) .1

2tan 0
(69)

p(K+Sd+C33+ $3 )+p 0 ' (70)

Comparing Eqs. (60)—(70) with the corresponding ex-
pressions in Sec. II 8, one finds that exactly the same re-
lations between V, tang, tanO, and elastic moduli as
those found in Eqs. (33)—(35) and Eqs. (39)—(41) can be
obtained for the QL and QT modes, respectively, by sim-

ply replacing C11 by E, C55 by C44, C11+ by K+, and s1
by sd. We list here final results for the QL and QT
modes.

For the QL mode they are

The equation of the slowness surfaces for the QL and QT
modes is found from Eq. (59) as

S—EC44sd +C33 C44$ 3 + Asd s 3

K tan 8+tang(8 tan 8—C33 ) —8 tanO+(K+tanO —C»+tang)D=0,

D(tanO) = 1

1 —tang tanO

X [tanO(C33+tang —K+tanO)

+[tan 8(C33+tang —K+tanO)~ —(1—tan (tan~8)(K~ tan 8—C33 )]'i ],

(71)

(72)
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(K tan 8—C33 —2C33+D —Dz}

8 cos gD (K+ tan 8+C33+ +D )
(73)

We choose the root of tan8 in Eq. (73) that satisfies D )0 and find the corresponding value of D. Hence, obtaining the
value of the elastic constant C» is straightforward.

For the QT mode we obtain

K2 tan38+tang(8 tan 8—C33 ) B t—an8 —(K+tan8 —C33+ tang)D =0,
1

D(tan8) = [tan8(K+ tan8 —C33+ tang)
1 —tang tan8

+[tan 8(K+tan8 —C33+tang) —(1—tan gtan 8)(K tan 8—C33 )]' ],
(K tan 8—C33 +2C33+D D)—

2 2 2Scos gD (K+tan28+C„+ D)—

(74)

(75)

(76)

The value of C» can be found from the above equations
in the straightforward method already mentioned.

For a cubic medium, there is no distinction between
three diagonal-type (n „n„n3 ), (n „n2,nz}, and

(n„n2, n, ) planes. We replace C&& by C44 in Eq. (60} for
K, C33 by C)), C» by C)2, C»+ by C)2+, C33+ by C))+,
and C33—by C» . With these replacements made, Eqs.
(71)—(73) apply to the QL mode and Eqs. (74}—(76) hold
for the QT mode in a cubic medium.

C) )
—

C22& C33 p C&2& C» C23& C44 C55

The following relation holds for a transverse isotropic
medium:

Css= —,'(C„—C,z) . (78}

For a hexagonal or transversely isotropic medium, only
the wave normals of both QL and QT modes lying in the
symmetry planes map themselves into the corresponding
symmetry planes of group-velocity surfaces, and vice ver-
sa. Hence, the formulas developed in orthorhombic and
tetragonal media apply unambiguously to a transversely
isotropic medium with Eqs. (77) and (78} used for ap-
propriate elastic constants.

a. Propagation in the I0001J zonal plane Conside. r an
elastic pulse propagating with group velocity V and
wave normal n at angles g and 8 respectively to the sym-
metry axis [0001],in a zonal plane parallel to this symme-
try axis. In this case, using the relations (77) and (78),
one finds that there is no distinction between the propa-
gations in the xix3, x2x3, and (n„n„n3) type of diago-
nal planes. Replacing C55 by C44 in the defining equa-
tions (10}—(12), we see that Eqs. (33)—(35} and Eqs.
(39}—(41) respectively hold for the QL and QT modes
propagating in the zonal plane.

b. Propagation in the basal plane. Consider an elastic
pulse traveling with group velocity Vz and wave normal
n at angles g and 8 respectively to the [100] axis in the
x,x2 basal plane. The same analytic expressions for the

2. Hexagonal or transversely isotropic groups

A hexagonal or transversely isotropic medium is
characterized by five nonzero elastic constants

I

QL and QT mode propagations in the x,xz plane of an
orthorhombic medium are extended to the basal plane of
a transversely isotropic medium, using Eqs. (77}and (78).

III. APPLICATIONS ILLUSTRATED
WITH DATA OF ZINC AND SILICON

In Sec. II, various formulas relating the group velocity
Vs to the wave normal n and the elastic constants of
media are described. In this section we illustrate some
important applications with hexagonal zinc and cubic sil-
icon crystals. In summary, basically two sets of formulas,
Eqs. (33)—(35) for the QL mode and Eqs. (39)—(41}for the
QT mode, provide these relations with appropriate re-
placements in elastic constants for various anisotropic
media.

A. Determination of group velocity surfaces
and cuspidal features

In this subsection we discuss the construction of the
group-velocity sheet of a zonal section of a transversely
isotropic zinc crystal. The extension of the method de-
scribed here to the determination of group velocities cor-
responding to the wave normals lying in the symmetry
planes in other anisotropic media is straightforward from
the descriptions given in the Sec. II. Kim and Sachse
obtained the five elastic constants of zinc from the
group-velocity data measured in two principal symmetry
directions. They are C» = 163.75 C]2 =36.278,
C ]3

=52.476 C33 62.928, and C44 =38.677 Gpa. For
transversely isotropic zinc Eq. (78) holds. The density of
zinc p used is 7134 kg/m . The (010) zonal section of the
slowness surfaces of zinc, generated using this data and
Eqs. (14), (8), and (2), are plotted in Fig. 2(a}, where the
[001] axis is a direction of rotational symmetry. Because
of transverse isotropy about the [001] axis, any zonal sec-
tion is identical to the (010) section. From these slowness
surfaces, the corresponding group-velocity surfaces are
constructed using the last part of Eq. (4), and they are
shown in Fig. 2(b}, which also shows the phase-velocity
section for reference. Note that Eq. (4) indicates that the
direction of group velocity or energy flux at any point of
the slowness surface is parallel to the surface normal at



3720 KWANG YUL KIM 49

Qo

0.4
[Too]—

Qco

0.2

[ool]

Slowness (ps/mm)

0.2
Qo

rounding the point Po. This cusp is not apparent in Fig.
2(b) because of its miniature shape. For simplicity of
nomenclature, let us call the ray branches of the QT
mode between P, and P„P, and P, and P and Po by
their acronyms, FQT (faster QT) mode, IQT (intermedi-
ate QT) mode, and SQT (slower QT) mode, respectively.

The group-velocity surfaces plotted in Fig. 2(b) can be
easily generated by using the formulas derived in Sec. II.
The easiest of them is certainly the PT group-velocity
surface generated by using Eq. (9). The group-velocity
direction g in terms of the wave-normal direction 8 is ex-

plicitly given by Eqs. (31) and (38) for the QL and QT
modes, respectively. To calculate the wave-normal direc-
tion 8 of either QL or QT mode corresponding to a
group-velocity direction g, let us write for notational sim-

plicity

4
00

I I I ] I I I I
]

i I I I
i

I I I I

Group Velocities
-" -Phase Velocities

r =tang and x =tang .

The Eqs. (33) and (39) can now be expressed as

y=—C&& x +Brx —Bx —C33

(79)

E P0

2
(J
Q

(Ci, +x —C33+P)Q Cii x —28x +C33 (80)

y=O, (81)

where the + in front of the parenthesis correspond to the

QL and QT modes, respectively, and the square-root
quantity is identical to D defined by Eq. (17}. The leading
terms in Eq. (80) for large values of ~x~ and a given finite r
are

0
0 2

Velocity (mm/ps)

5—[ioo]

y-2C»(C» —C~}x, (QL mode)

y ——2C44(C» —C44)x (QT mode) .
(82)

FIG. 2. (a) (010) section of the slowness surface in zinc. (b)

(010) section of the group- and phase-velocity surfaces in zinc.

that point. Usually, an isotropic distribution of wave
normals in every direction is assigned and the group ve-

locity corresponding to each wave normal is calculated,
according to Eq. (4).

As shown in Fig. 2(a), the QL and PT slowness sheets
of zinc are everywhere convex and therefore their corre-
sponding group-velocity sheets are not folded in any
direction. Near the point Q, on the [001] symmetry axis,
the QT sheet of the slowness surface is concave, with
both principal curvatures being negative. At Q, the prin-
cipal curvature in the zonal section changes sign, and be-
tween here and the point Q the surface is saddle
shaped. At Q„ the principal curvature transverse to the
zonal section changes sign and the energy cruxes at the
points lying on the circle generated by rotating the line
from the origin to Q „about the [001]axis are all parallel
to this symmetry direction. In Fig. 2(b) the points P, and
P„on the symmetry axis, P, on the cuspidal edge, and
the point Po on the basal plane correspond to the points

Q„Q„,Q„and Qo in Fig. 2(b), respectively. There is a
region on either side of the basal plane near Qo where the
in-plane curvature is again negative, leading to the fold-
ing of the group-velocity surface in a tiny region sur-

Equation (82) ensures that Eq. (81) has at least one real
root of x corresponding to a given g for both QT and QL
modes. Equations (80) and (81) for the QL mode are
found to have only one real root of x for all values of r in
zinc. Duff has shown that the QL slowness surface of all
media is everywhere convex, which implies that Eq. (80)
has in fact only one real root and two complex conjugate
roots for all values of r. However, for the QT mode, Eq.
(81) may possess more than one real root up to the inax-
imum of three for some range of group-velocity direction
g, which is called a cuspidal region. As shown in Fig.
2(b) for g lying between P, (or P„}and P„Eq. (81) for
the QT mode has three distinctive real roots with two
real roots in the direction of the cuspidal edge P„ in
which one root is of multiplicity degree 2. Outside the
cuspidal region the QT equation has only one real root.
Once these real roots are found for a given group-velocity
direction specified by r =tang, D is obtained through Eq.
(17) and the corresponding group-velocity values are
determined by using Eqs. (35) and (41) respectively for
the QL and QT modes. The group-velocity curves gen-
erated in this way are of course virtually identical to
those in Fig. 2(b).

Equations (80) and (81) are particularly suitable for cal-
culating the directions of the infiection points Q, and Q „
of the slowness surface and cuspidal edge P, of the
group-velocity surface to an arbitrary precision, which
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are not easily obtainable with the conventional method
described in the first paragraph above in this subsection.
Using the computer algebra found, for example, in the
Plot and FindRoot routines of Ref. 3, we solve with the QT
mode equations (80) and (81) for the nonzero-group-
velocity direction r that gives a real root of multiplicity
degree 2. The solution yields r =tang=tan21. 53553436'
for the direction of the cuspidal edge P, in Fig. 2(b) and
x =tan8 = tan( —9.3036671 ) for the direction of
inflection point Q, in Fig. 2(a). The corresponding QT-
tnode group velocity is calculated to be 2.55646 mm/ps.
The direction of the point Q in Fig. 2(a) is on substitut-

ing r=0 found to be x =tane=tan(+24. 5244'), which
yields the group velocity of the QT mode equal to
2.05998 mm/p, s. For the group-velocity direction
r =tang=tan10', roughly midway in the cuspidal region,
the solution of the QT-mode equations yields three real
values of x =tan( —2.30438'), tan( —20.01006'), and
tan28. 1366', which respectively give the group velocities
V =2.37253 mm/1Ms (FQT mode), 2.25501 mm/ps (IQT
mode), and 1.92376 mm/tts (SQT mode). Likewise, the
solution of the QL-mode equations yields one real root
x =tan1. 68993, which results in a group velocity equal
to 3.00805 mm/114s (QL mode). Outside the cuspidal re-
gion, at say r=tan45'=1, Eqs. (80) and (81) yield only
one real root for both QL and QT modes, which are re-
spectively x =tan15. 1942' and x =tan38. 9054'. The cor-
responding group velocities are calculated to be 3.81945
mm/1ps and 1.80133 mm/Ms.

There exists a tiny cusp around the [100] direction,
which is not visible in the resolution of Fig. 2(b) but is ap-
parent on a greatly magnified scale. Musgrave' and later
McCurdy discussed the conditions for the existence of a
cusp around the symmetry axes of a transversely isotro-
pic medium. The cuspidal condition around the [100]
axis is

(C13+C44) & C33(C11 C44), (83)

which is satisfied for zinc. A similar condition with the
interchange of indices 1 and 3 in Eq. (83) holds for the ex-
istence of a folding QT sheet around the [001]axis, which
zinc also meets. Equations (80}and (81) for the QT mode
are also very useful for plotting this cusp to an arbitrary
precision. For this purpose it is more convenient to mea-
sure the directions of wave normal and group velocity,
x =tan8 and r = tang, from the [100]direction. We inter-
change the indices 1 and 3 in Eq. (80), which is then ex-
pressed in the form

y=C&& x +Brx —Bx —
C&& r

k(C33+x —C11+r)QC33 x —28x +Ctt . (84)

The quantities B, C&z, and C&z+ are invariant under the
operation of this particular index interchange. Equations
(84), (81}, (17), and (41) are used to calculate detailed
features of the cusp around the basal plane. They are
shown in Fig. 3, which is very similar to the greatly
magnified cusp found in Ref. 10.

For media other than those of transverse isotropy, Eqs.
(80) and (81) also apply to determine their QL-mode
group-velocity surfaces in the symmetry plane. The QL

[oo1] (
C = 0.568781502523 )
V, = 2.32996 mrn/ps I

r

V&
= 2.32398 mm V& = 2.3284I mrn/p, s

= [1oo]

ray surfaces are not folded, because their corresponding
QL slowness surfaces are shown to be everywhere con-
vex. This is not generally true for the QT modes of
nonhexagonal media. All the points on the symmetry
plane of both QL and QT slowness surfaces map onto the
corresponding symmetry plane of group-velocity sur-
faces. However, the converse is not true for the QT
modes. Depending on the direction, the QT slowness
surface is concave, convex, or transitional between them.
Some points of zero Gaussian curvature lying outside the
symmetry planes of the slowness surface may have their
caustics mapping across the mirror-symmetry plane and
others map onto a cusp on the symmetry plane of the cor-
responding group-velocity surfaces, where Eqs. (80) and
(81) no longer hold. In the cuspidal region the group ve-

locity is multivalued for a given direction of r =tang and
there is at least one branch of the QT-mode group veloci-
ty that corresponds to the wave normals in the corre-
sponding symmetry plane of the slowness surface. Equa-
tions (80) and (81) for the QT mode then apply to deter-
mine the group velocities and cusps, which are strictly
due to the wave normals of the corresponding symmetry
plane of the slowness surface. These equations also apply
to the region outside the cusps in the symmetry plane of
an actual group-velocity surface, since the group velocity
therein is single valued and one surely finds the corre-
sponding wave normal in the symmetry plane of the slow-
ness surface. Here, we exclude the fictitious group-
velocity directions in which no energy flux flows, as in the
case of internal conical refraction about the [111]direc-
tion of sotne crystals. ' Equations (80) and (81) may be
unambiguously applied to the QL and QT modes in the
symmetry planes of media that are weakly deviating from
transverse isotropy. "

A detailed treatment of Eqs. (80) and (81) for trans-
versely isotropic and other media and their applications
will be treated elsewhere.

B. Determination of elastic constants with mixed indices

It is well known that pure-index elastic constants of or-
thorhombic or higher-symmetry media, C&&, Cz2, C33,
C44, C55, and C66, can be accurately obtained from the
phase- or group-velocity data of pure longitudinal and

(
f = -0.568781502525

jVg = 2.32996 mm/p. s

FIG. 3. A magnified view of a cusp about the [100] axis in

zinc.
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pure transverse waves propagating in the direction of the
symmetry axes of the media. ' ' The mixed-index elastic
constants, C,z, Cz&, and C», are usually determined by
transmitting either QL or QT waves along an arbitrary
direction in the symmetry plane and measuring their
phase velocities and then by using Eq. (14) for, say, C».
This requires preparation of a sample with two opposite
faces parallel to each other in a nonsymmetry direction to
quite an accurate degree to minimize error in the phase-
velocity measurement. The accurate alignment of the
sample to a nonsymmetry direction is considerably more
difficult than its similar alignment to a symmetry direc-
tion. Moreover, sometimes there arises a situation in
which faceting of samples in a nonsymmetry direction is
not desired, as often found in the case of composite ma-
terials fabricated along the fiber direction. These
difficulties can be easily overcome by measuring the
group velocity of either the QL or the QT mode in an ar-
bitrary direction of the symmetry plane and using Eqs.
(34) and (35) for the QL mode and Eqs. (40) and (41) for
the QT mode to calculate a mixed-index elastic constant.
This can be easily achieved by using pointlike sources
such as capillary fracture and irradiation of a focused
laser beam on the surface of a sample and by employing
pointlike detectors such as small-diameter piezoelectric
and capacitive transducers. ' We illustrate here with the
determination of C» in zinc with the numerically simu-

lated data shown above and the determination of C&z in

silicon with experimental data.
Above in Sec. III A, the group velocities of the QL and

QT modes of zinc in the directions of 10' and 45' on the
zonal plane are calculated. Suppose now that for zinc the
pure-index elastic moduli, C», C33 and C~, have been
accurately measured and their values are the same as
those listed in Sec. III A. Suppose also that we have mea-
sured the group velocities of both QL and QT modes in

these two directions, which are exactly the same as those
calculated in Sec. III A; namely, V =3.00805 mm/p, s

(QL mode), 2.37253 mm/ps (FQT mode), 2.25501 mm/]Ms

(IQT mode), 1.92376 mm/ps (SQT mode), for the 10'

direction; V~
=3.81945 mm/]Ms (QL mode), 1.80133

mm/us (QT mode), for the 45' direction that is outside
the cuspidal region. Given these values, can the elastic
constant C» be calculated, resulting in the same value

52.476 GPa as listed in Sec. III A? The answer is
definitely yes, and we illustrate with the cases of the QL
mode in the 45' direction and QL and IQT modes in the
10' direction.

We deal first with the QL mode propagating with
V =3.81945 mrn/ps in the 45 direction. Substitution of
D in Eq. (34) with the negative square root into Eq. (35)
yields no real solution for x =tan8. However, simultane-
ous equations for x and D of Eq. (34) with the positive
square root and Eq. (35) produce the solution
x =tanO=tan15. 1941 =0.271583 and D =51.7413 GPa,
which through the use of Eqs. (22), (16), and (12) finally

yields C» =52.4766 GPa in excellent agreement with the
value of C]& listed (52.476 GPa) in Sec. III A. Similarly,
for the QL mode propagating with V =3.00805 mm/ps
in the 10 direction inside the cuspidal region, D with the
positive square root in Eq. (34) and Eq. (35) yield two real

values of x =0.521046 and 0.0295008. They respectively
provide D with the values of —7.28858 GPa (thus dis-
carded) and D =24.734 GPa, which yields C» =52.4804
GPa. Again, it is found that D with a negative square
root has no real solution for x. For the IQT mode propa-
gating with V =2.25501 mm/ps in the 10 direction, D
with a negative square root in Eq. (40) and Eq. (41) pos-
sess no real solution for x. D with a positive square root
and Eq. (41) yield two solutions: x =0.337463,
D=45.6684 GPa, C»=27. 3427 GPa; x= —0.364172,
D =66.8319 GPa, C»=52.4766 GPa. The former C»
value is certainly wrong, judging from comparison with
other C]s values obtained with the QL group-velocity
values. Both values of C» satisfy the constraints re-
quired for the positivity of the strain energy of a hexago-
nal crystal. They are expressed as'

(C], +C]~)C33)2C» and C»C33)C]3 (85)

The FQT and SQT group-velocity values in the 10' direc-
tion also lead to one correct and the other wrong C»
value, both of which satisfy the conditions of Eq. (85).
For the SQT group velocity in the 45' direction, D with a
positive square root in Eq. (40) yields C]& = 100.645 GPa,
while D with a negative square root in Eq. (40) gives the
correct value of C» =52.4763 GPa. The former value is
discarded, because it fails to satisfy the latter condition of
Eq. (85).

For determination of C&& from the experimentally mea-
sured group velocities, it is certainly recommended that
one chooses the group velocities of the QL mode, the ar-
rival of which can be unambiguously determined at the
point from which the signal first jumps above the noise
level for virtually all materials. The materials in which
the transverse group velocity exceeds the longitudinal
group velocity are extremely rare and even in such ma-
terials it occurs in a narrow range of directions. Exam-
ples include a tetragonal tellurium dioxide crystal and
the wood of orthorhombic spruce. ' Except for the dis-
placement signal detected by a capacitive transducer with
a known type of source, e.g., a capillary fracture whose
time function resembles a Heaviside step, ' the unambi-
guous identification of QT-mode arrival is generally quite
difficult in the signal generated by a pointlike broadband
source and detected by a piezoelectric transducer, partly
because of the lingering QL mode and in some directions
head waves superimposed on the QT mode and partly be-
cause of the ringing of the detecting transducer. There is
another reason why the QL group velocity is preferred.
As mentioned before, Eqs. (33)—(35) or their equivalents
for the QL mode of various symmetry groups are safely
applied to determine uniquely the elastic constant C,~.
However, as shown in Fig. 4, which shows the complicat-
ed (010) section of silicon group-velocity surfaces, some
of the QT-mode wave normals lying in nonsymmetry
planes may map themselves as one or more cusps in the
symmetry plane of the group-velocity surfaces. In this
circumstance, Eqs. (39)—(41) and their equivalents are no
longer valid for these cusps, and in the cuspidal region
one has to choose judiciously the arrivals of those QT
modes which originate from the QT wave normals in the
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FIG. 4. (010) section of the group- and phase-velocity sur-
faces in silicon.

FIG. 5. A displacement signal detected by the capacitive
transducer at a distance of 25 mm from the epicenter in the
[100] direction on the top surface of a 49.2-mm-thick (001) sil-
icon disk with a capillary fracture source on the bottom side.

corresponding symmetry plane. This is of course not an
easy task. Otherwise, one has to completely avoid a
cuspidal region, the direction of which is not known
a priori in the absence of prior knowledge of the C&2,

C)3, or C23 value.
Finally, we illustrate a determination of the elastic con-

stant C,z of silicon using Eqs. (49) and (50) for a cubic
medium and a QL-mode group velocity measured in the
direction lying in the (010) plane. The values of elastic
constants C&& =165.7 GPa and C44=79. 56 GPa are ob-
tained from the pure L and pure T group-velocity data
measured in the [001] direction and the density of 2332
kg/m . Another independent measurement of pure L
and pure T modes propagating in the [110] direction
yields C&2=63.90 GPa. Using these values of elastic
constants, the Monte Carlo —generated (010} section of
group-velocity surfaces is plotted in Fig. 4, which also
shows the phase velocities for reference. It displays very
complex folded features of the QT-mode group-velocity
sheets, the enlarged view of which (not shown here) mani-
fests one cusp arising due to the wave normals lying in
the (010) plane and the other three foldings due to the
wave normals oriented in the nonsymmetry planes. ' The
QL group velocity 8.830 mm/ps is determined from the
QL-mode arrival indicated in the signal shown in Fig. 5,
which is detected by a miniature capacitive transducer lo-
cated at a distance of 25 mm ((=29.9365') from the epi-
center in the [100] direction on the top surface of a 49.2-
mm-thick disk of (001) silicon. Broadband ultrasonic
waves are generated by a capillary fracture source located
at the origin on the bottom face. Use of D with a positive
square root in Eq. (49) and Eq (50), to.gether with
C&&

= 165.7 GPa C44 =79.56 GPa V& =8.830 mm/ps,
and p =2332 kg/m, yields only one real value of
C&2 =64.604 GPa in good agreement with the
C,2=63.90 GPa listed above. D with a negative square
root in Eq. (49) and Eq. (50) have no real root for
x =tang. Substitution of C,&=63.90 Gpa in Eqs. (48)
and (50) predicts a QL group velocity equal to 8.82720

mm/ps in the direction of the detector. Note that an er-
ror as small as 0.032'///o in group-velocity measurement re-
sults in an error as large as 0.79% in the elastic constant
C,2. Use of the QT-mode arrival in Fig. 5 with Eqs. (52}
and (53) leads to similar results.

C. Determination of all elastic constants of a cubic medium

with longitudinal group velocity data

The question arises: is it possible to determine all three
elastic constants of a cubic medium with only the QL-
mode group-velocity data measured in at least three
different directions lying in the symmetry plane? The
answer is in principle yes, judging from Eqs. (48)—(50)
and (71)—(73), which do not preclude this possibility. In
this subsection we demonstrate briefly how this works
out with the (001)-oriented silicon sample used in Fig. 5.
The method described here can be applied to the (110)-
oriented sample with an appropriate replacement of elas-
tic constants as described in Sec. II. Kim et al. ,

'

without relying on the group-velocity formulas derived
here, provide some approximate methods of determining
all elastic constants of a cubic medium using the group-
velocity data of both modes measured in an arbitrary
direction on the symmetry plane of silicon disks of vari-
ous orientations. The method provided here, using
analytical formulas developed in the previous section, is
exact.

A broadband source, which can be excited either by a
capillary fracture or by a focused laser pulse, is located
on the top surface of the sample. We choose either the
(001) top surface or the bottom part of the (010) plane to
detect the generated waves. To simplify and thus mini-
mize errors, we choose (100) and (110)directions. The
third direction chosen is that of the detector used
(/=26. 9365') in Fig. 5. Equations (48) and (50}yield sim-
ple formulas, pVg=C» and pVz=(C»+C, 2+2C44)/2,
for the ( 100) and ( 101 ) directions, respectively. Let us
suppose that the measurement of the QL group velocities
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in these two directions gives C» = 165.7 GPa and

C, =(C,2+2C44)=223. 02 GPa and a similar measure-
ment in the third direction yields V =8.8272 mm/ps,
with all these values as predicted using the three elastic
constants provided in Sec. III B (C» = 165.7 GPa,
C&z =63.9 GPa, and C~ =79.56 GPa). Use of
C» =165.7 GPa, C, =223.02 GPa, V =8.8272 mm/ps
for the third direction in Eqs. (48) and (50) yields the two
correct values of elastic constants C,2=63.9 GPa and

C44=79. 56 GPa, exactly identical to the values used in

Sec. III B. However, using the actual measured value for
the third direction, Vs=8. 830 mm/ps, with the same
values of C» and C„provides us with C]2=50.54 GPa
and C44=86. 24 GPa, which are in substantial error.
Similarly, using for the third direction V =8.828
mm/p, s, which deviates less than 0.01% from the predict-
ed value, one obtains C&2=60.02 GPa and C44=81.50
GPa, which deviate a few percent from the supposedly
correct values. The implication here with these numeri-
cal experiments is that the determination of three elastic
constants from the measured longitudinal-wave group-
velocity data alone requires precise measurements of
them with accuracy better than 0.01%. This is partly at-
tributed to the fact that directional variations of the QL
group velocity in the [100] plane of silicon are relatively
small, as evident in Fig. 4.

A detailed description on the determination of elastic
constants from group-velocity data measured in cubic
and hexagonal crystals, and transversely isotropic and
orthotropic fiber-reinforced composite materials, using

the formulas derived in Sec. II, will be published else-
where.

IV. CONCLUSIONS

We have derived closed-form analytic equations that
relate the group velocities of both QL and QT modes

propagating in an arbitrary direction of the symmetry
planes of a medium with orthorhombic and higher sym-

metry to the elastic constants of the medium. Analytic
formulas relating the directions of the group velocity and
the corresponding wave normal in the symmetry plane
are also presented for both modes. Applications of these
relations to the determination of group-velocity surfaces
in a transversely isotropic medium, and a forward solu-

tion for obtaining the mixed-index elastic constants, are
illustrated with examples of hexagonal zinc and cubic sil-

icon.
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