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The elastodynamic response of a semi-infinite anisotropic solid
to sudden surface loading

A. G. Every, K. Y. Kim,a) and A. A. Maznevb)

University of the Witwatersrand, PO WITS 2050, South Africa
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Integral expressions are derived for the displacement response tensor of a semi-infinite anisotropic
elastic continuum of unrestricted symmetry to a concentrated force suddenly applied to its surface.
The surface response is reduced to a one-dimensional integral for numerical evaluation, while the
interior response is left as a two-dimensional integral. Calculated surface response functions for
Cu~001! are presented. These display multiple Rayleigh wave arrival singularities as well as bulk
wave arrivals. Calculated interior response functions for Zn~0001! are presented. These display bulk
and head wave arrivals. In followup papers these methods will be used in the interpretation of
capillary fracture generated waveforms measured in a number of different materials. ©1997
Acoustical Society of America.@S0001-4966~97!06208-5#

PACS numbers: 43.20.Gp@ANN#

INTRODUCTION

There is growing interest in the dynamic response func-
tions ~Green’s functions! of elastically anisotropic solids.1–14

Part of the reason for this is the need for simple and efficient
computational algorithms for use in interpreting waveform
data emanating from laser ultrasound experiments,15–18

transmission and reflection acoustic microscopy,19–22 and
various other transient wave experiments.23,24 For some pur-
poses it is sufficient to trace the progress of wave arrivals
through the medium, making use of the ray
approximation.15–17 In some cases detailed transmission
waveforms measured in samples of finite geometry can be
reasonably well accounted for with response functions calcu-
lated for the infinite continuum.1 Surfaces do, however, have
a modifying effect on transmission waveforms, and this gen-
erally becomes more pronounced as the sensing point is
moved away from epicenter and head waves come into
prominence.25 When the displacement is measured on the
same surface as the applied force, the surface plays a deter-
mining role in the response, which tends to be dominated by
one or more Rayleigh wave or pseudo-surface-wave arrivals.

This paper is the first in a three part series in which we
show that surface and also to a large extent transmission
waveforms, generated by a transient force acting on the sur-
face of an elastically anisotropic solid, conform well to dy-
namic response functions calculated for the semi-infinite
continuum. Reverberation effects arising from reflections
from the opposite faces and sidewalls lie outside the scope of
the present series of articles.

The problem of the displacement response of an elastic
half-space to a point or line load suddenly applied at the
surface has received wide attention over the years, since first
being posed by Lamb.26 Analytical solutions for point and
line loading of an isotropic half-space were first obtained by
Cagniard by a method involving Laplace transformation and

intricate deformation of the integration contour to analyti-
cally perform one of the integrations in the inverse transfor-
mation. These celebrated solutions are to be found in a num-
ber of books on the dynamics of solids.27,28 Burridge29

extended the Cagniard method to calculate the response of an
anisotropic half space to an impulsive line load at the sur-
face, and similar results have been obtained through direct
integration by Maznev and Every.30 The Cagniard–de Hoop
method has been extensively reviewed by van der Hijden.31

Willis32 in a seminal paper obtained the formal solutions to a
wide class of self similar problems for the anisotropic half-
space using Fourier and radon transforms, and this method
has been further developed by Wang and Achenbach.4

Payton33 has treated a number of problems for transversely
isotropic half-spaces that admit closed-form solutions. Re-
cently Mourad et al.5 have used the Cagniard–de Hoop
method to calculate the interior response of anisotropic half
spaces of hexagonal and cubic symmetry to point loading.
Their method reduces ultimately to a single angular integral
which has to be done numerically. Another approach that has
been taken recently in calculating response functions of an-
isotropic half spaces is integral representation in terms of a
d function by Tewary and Fortunko.13,14

In this paper we establish methods for calculating the
dynamic response at surface and interior points of a semi-
infinite anisotropic elastic continuum of unrestricted symme-
try to a point load suddenly applied at the surface. Our ap-
proach is to Fourier transform the equations of motion and
boundary conditions with respect to time and the spatial co-
ordinates parallel to the surface, solve the resulting algebraic
equations, and then carry out the inverse transformation. The
surface response is reduced to a one-dimensional integral for
numerical evaluation, while the interior response is left as a
two-dimensional integral. The method we use for computing
these numerical integrals is able to cope with Rayleigh poles
and pseudo-surface-wave resonances. Our method of calcu-
lating the interior response, in that it is in the form of a two
dimensional integral, is computationally somewhat less effi-
cient than the Cagniard–de Hoop method5 and the method of
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Wang and Achenbach,4 but it has the advantage of concep-
tual simplicity and ease of implementation. In our analysis
we give particular attention to wave arrival singularities,
which are a striking feature of both surface and interior re-
sponses. By way of illustrative numerical example, we
present calculated surface responses for Cu~001! and interior
responses for Zn~0001!. In subsequent papers in this series,
we apply our method to the interpretation of capillary frac-
ture generated surface and transmission waveforms in a num-
ber of different materials.

I. METHOD OF CALCULATION

We consider a general anisotropic elastic continuum of
density r and elastic modulus tensorCi jkl occupying the
half-space x3.0. A concentrated point forceF(t)
5„F je(t)… with sign-function time dependence

e~ t !5H 1, t.0

21, t,0
~1!

acts at the origin on the otherwise free surface of the half-
space. The displacement fieldu(x,t) in response to this force
is given by

ui~x,t !5Gi j
e ~x,t !F j , ~2!

whereGi j
e (x,t) is the response function tensor.

Later in this paper we shift our attention to the response
function Gi j

Q(x,t) pertaining to a force with Heaviside step
function time dependence

Q~ t !5 1
2$e~ t !11%, ~3!

which is more amenable to direct measurement. Rather than
calculatingGi j

Q(x,t) directly, it is somewhat simpler to cal-
culateGi j

e (x,t) and then obtainGi j
Q(x,t) from

Gi j
Q~x,t !5 1

2$Gi j
e ~x,t !2Gi j

e ~x,0!%. ~4!

This sidesteps thed function that occurs in the Fourier trans-
form of Q(t), but not that ofe(t). The time derivative of
Gi j

Q(x,t) is the dynamic Green’s tensor of the medium.
The displacement field is required to satisfy the equa-

tions of motion

r
]2ui

]t2
5Ci jkl

]2ul

]xj ]xk
, x3.0, ~5!

subject to the boundary conditions on the stress tensor

s l 3~xi ,x3501 ,t !52F jd j l d~xi!e~ t !, ~6!

wherexi5(x1 ,x2) denotes the position vector in the surface
and d(xi)5d(x1)d(x2) is the two-dimensionald function.
The negative sign in Eq.~6! arises from the fact that the
surface tractionss j 3(xi ,x3501 ,t) are in reaction to the ap-
plied force. The initial conditions areGi j

Q(x,t)50, t,0.
Representing the boundary conditions in terms of their

Fourier transform with respect toxi and t, we have

s l3~xi ,x3501 ,t !5E
2`

`

d2ki E
2`

`

dv
F jd j l

4p3iv

3exp$ i ~ki.xi2vt !%, ~7!

whereki5(k1 ,k2) is the projection of the wave vector in the
surface andv is the angular frequency.

We seek a solution to the equations of motion~5! and
boundary conditions~7! in the form of a superposition of
outgoing plane waves whose amplitudes are proportional to
F j :

ui~x,t !5E
2`

`

d2ki E
2`

`

dv (
n51

3

Aj
~n!F jUi

~n!

3exp$ i ~ki–xi1k3
~n!x32vt !%. ~8!

For each value ofki andv, the third componentk3 of k and
the polarization vectorU are related by the Christoffel equa-
tions

~Ci jkl sjsk2rd i l !Ul50, ~9!

where s5k/v, is the acoustic slowness vector ands3
(n)are

roots of the characteristic sextic equation

detuCi jkl sjsk2rd i l u50. ~10!

Equation~10! yields six solutions of which three are chosen
which correspond to outgoing waves, on the basis that they
are either homogeneous~bulk! waves with ray vectors di-
rected into the interior, or inhomogeneous~evanescent!
waves which decay into the interior.34 The choice of outgo-
ing waves depends on the sign ofv, which will be restricted
to positive values, as explained later.

From the stress–strain relationship, s lm

5Clmpq]up /]xq , and Eq.~8! it follows that the surface trac-
tions are given by

s l3~xi ,x3501 ,t !5E
2`

`

d2ki E
2`

`

dv iv (
n51

3

Aj
~n!F jBl

~n!

3exp$ i ~ki–xi2vt !%, ~11!

where

Bl
~n!5(

pq
C3lpqUp

~n!sq
~n! , ~12!

in which (s1
(n) ,s2

(n))5(s1 ,s2). Comparing~7! and ~11! we
arrive at a set of three linear equations for the partial wave
weighting factorsAj

(n)

(
n51

3

Aj
~n!Bl

~n!52d j l /4p3v2. ~13!

These have solution

Aj
~n!52

1

4p3v2
~B21! j

~n!52
1

4p3v2

adj~B! j
~n!

detuBu
, ~14!

adj denoting matrix adjoint.
From Eqs.~2!, ~8!, and~14! it follows that

Gi j
e ~x,t !52

1

4p3E2`

`

d2ki E
2`

` dv

v2 (
n51

3

L i j
~n!

3exp$ i ~ki.xi1k3
~n!x32vt !%, ~15!

where
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L i j
~n!5

adj~B! j
~n!Ui

~n!

detuBu
. ~16!

Since Gi j
e (x,t) is real, it follows that its temporal Fourier

transform has the propertyG̃i j
e* (x,v)5G̃i j

e (x,2v), where
the asterisk denotes complex conjugation. We exploit this
property to restrict the integration overv in ~15! to the in-
terval @0,̀ #, retaining only the real part. On further replac-
ing the integration variableki by si5ki /v we arrive at the
result

Gi j
e ~x,t !52

1

2p3
ReE

2`

`

d2si E
0

`

dv (
n51

3

L i j
~n!

3exp$ iv~si–xi1s3
~n!x32t !%. ~17!

We treat the surface response and the response at interior
points separately below.

II. SURFACE RESPONSE

By choosing the coordinate system suitably one can,
without loss of generality, take the observation pointx to be
along thex1 axis on the surface. Settingx25x350, Eq.~17!
simplifies to

Gi j
e ~x1 ,t !52

1

2p3
ReE

2`

`

ds1E
0

`

dvF i j ~s1!

3exp$ iv~s1x12t !%, ~18!

where

F i j ~s1!5E
2`

`

ds2C i j ~si!, ~19!

and

C i j ~si!5 (
n51

3

L i j
~n!~si!. ~20!

Convergence of the integral overv is achieved by the re-
placement (s1x12t)→(s1x12t1 i01). On integrating, one
obtains

Gi j
e ~x1 ,t !52

1

2p3
ReE

2`

1`

ds1

iF i j ~s1!

~s1x12t1 i01!

52
1

2p3F2P E
2`

1`

ds1

Im F i j ~s1!

~s1x12t !

1
p

ux1u
Re F i j ~ t/x1!G , ~21!

with P * denoting the principal value of the integral.
Using the fact that for negative timesGi j

e (x1 ,t) is con-
stant, and settingGi j

e (2x1 ,2t)5Gi j
e (2x1,0), t.0, we ar-

rive at the Kramers–Kronig-type relation

2P E
2`

1`

ds1

Im F i j ~s1!

s1x12t
5

p

ux1u
Re F i j ~ t/x1!

12p3Gi j
e ~2x1,0!. ~22!

It follows immediately from Eqs.~4!, ~21!, and~22! that the
response function pertaining to a Heaviside force is given by

Gi j
Q~x1 ,t.0!52

1

2p2ux1u
Re$F i j ~ t/x1!2F i j ~0!%, ~23!

which, bearing in mind~19!, is in the form of a one-
dimensional integral. For an isotropic solid this integral can
be evaluated analytically, but for an anisotropic solid, nu-
merical methods are in general required for its evaluation.

A. Some properties of C i j (si), F i j (s 1), and Gij
Q(x 1 ,t )

For small values ofsi lying in the fully supersonic re-
gion enclosed by the curve of critical longitudinal~L! slow-
nesses in the surface, alls3

(n)(si) are real, and henceC i j (si)
is real. Outside this critical curve, some or all of thes3

(n)

3(si) are complex or pure imaginary, andC i j (si) is in gen-
eral complex.

Further restrictions are imposed by the presence of ma-
terials symmetry. In the case where thex3 axis lies along a
twofold axis or is perpendicular to a symmetry plane, the
following conditions hold:

The individual components ofC i j are either symmetric
or antisymmetric with respect to reversal of the direction of
si :

C i j ~2si!5C i j ~si!, i j P~11,22,33,12,21!,
~24!

C i j ~2si!52C i j ~si!, i j P~13,23,31,32!.

Likewise, for reversal of the direction ofx1 ,

Gi j
Q~2x1 ,t !5Gi j

Q~x1 ,t !, i j P~11,22,33,12,21!,
~25!

Gi j
Q~2x1 ,t !52Gi j

Q~x1 ,t !, i j P~13,23,31,32!.

For large si lying in the subsonic region outside the
curve of limiting slow transverse~ST! slownesses, or tran-
sonic state as it is called, the solutions of Eq.~10!, which
takes the form of a cubic ins3

2 because of symmetry, are all
of the form 6 iq or 6(p6 iq), p,q real. The three dis-
carded solutions are consequently2s3

(n)5 s3
(n)* , wheres3

(n)

are the three chosen solutions corresponding to outgoing
waves. It follows that

C i j „si ,2s3~si!…5C i j* „si ,s3~si!…. ~26!

It is evident from Eqs.~9!, ~10!, ~12!, ~17!, and~20! that

C i j ~2si ,2s3„si!…52C i j „si ,s3~si!…, ~27!

at all points except whereBi
(n) is singular. From Eqs.~24!,

~25!, and ~26! one thus infers that, in the subsonic region
away from singular points,

C i j* ~si!52C i j ~si! and C i j ~si! is pure imaginary,

i j P~11,22,33,12,21!,
~28!

C i j* ~si!5C i j ~si! and C i j ~si! is real,

i j P~13,23,31,32!.

In the subsonic region, for all except possibly a few
isolated directions ofsi , there is a single Rayleigh surface
wave~RW! corresponding to the vanishing of detuB(si)u ~see

1348 1348J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Every et al.: Elastic half-space response



Ref. 35!. This gives rise, for a given direction, to a simple
pole in C i j (si) at sR , which on being moved above the real
axis yields, forsi nearsR ,

C i j ~si!;Ress5sR
C i j ~si!H P S 1

si2sR
D1 ipd~si2sR!J ,

~29!

where Ress5sR
C i j (si) denotes the residue ofC i j (si) at si

5sR . Hence forsi nearsR ,

Re„C i j ~si!…; ip@Ress5sR
C i j ~si!#d~si2sR!,

i j P~11,22,33,12,21!,
~30!

Re„C i j ~si!…;@Ress5sR
C i j ~si!#P S 1

si2sR
D ,

i j P~13,23,31,32!.

For larges1 , beyond where the lines15constant inter-
sects the RW slowness curve,

Re„C i j ~si!…50, „F i j ~s1!…50

and ~31!

Gi j
Q~x1 ,t !5

F i j ~0!

2p2ux1u
5const

for i j P~11,22,33,12,21!.

If, further, the (x1 ,x3) plane is a materials symmetry
plane, then

Gi j
Q~x1 ,t ![0 for i j P~32,23,21,12!. ~32!

B. Numerical integration and results

For an anisotropic solid the integration overs2 in ~19! to
obtain F i j has, in general, to be done numerically, and the
method of integration has to cope with the RW poles and, in
cases where they exist, pseudo-surface-acoustic-wave
~PSAW! resonances.34 This point is brought out in Fig. 1,
which shows the dependence ofC33 on s2 for fixed s1

50.21ms/mm for the~001! surface of copper. The reference

axes are aligned along the principal crystallographic direc-
tions, andC33 is unchanged by a reversal in the sign ofs1 or
s2. The real part ofC33 displays a sharp peak at 0.39ms/mm,
which is associated with a PSAW resonance. Fors2.0.43
ms/mm,C33 is pure imaginary except for ad-function sin-
gularity at 0.45ms/mm, associated with the RW pole. Sharp
dips occur in Re(C33) at the limiting L and one of the lim-
iting fast transverse~FT! slownesses.

A global picture is provided by Fig. 2, which portrays
the dependence of Re(C33) on boths1 ands2 as a gray-scale
‘‘image,’’ with degree of darkness corresponding to the mag-
nitude of Re(C33). To render the RW singularity visible, it
has been artificially broadened by making the replacement

C33→1/~1/C331a!, ~33!

where a is a small but finite positive number. A similar
effect can be achieved by ascribing a small imaginary part to
si . The vertical line in this image represents the ‘‘line scan’’
for the data in Fig. 1. The continuously shaded area in Fig. 2
comprises theC33 weighted projectionssi of the slowness
vectors of all bulk modes in the first quadrant, its outer
boundary being the so-called transonic state. The lines which
stand out as lighter and which partition this domain, lie on
the locus of limiting slownesses. This locus and the transonic
state are the projection on the (s1 ,s2) plane of points on the
three sheets of the slowness surface where the surface nor-
mal is parallel to the (s1 ,s2) plane. Along the@110# direc-
tion, the diagonal in Fig. 2, the ST bulk modes are SH po-
larized normal to the (110) symmetry plane, and thus do not
contribute to Re(C33), as is evident from the fading of the
ST modes in this region. The sharp RW resonance is most
intense in thê 100& directions, and fades away towards the
@110# direction, where it degenerates with the transonic state.

In the region extending about 20° to either side of the
@110# direction there is a PSAW resonance lying within the
band of ST bulk modes. Exactly in the@110# direction where

FIG. 1. C33 (s150.21ms/mm,s2) for the~001! surface of copper. Constants
for the calculation areC115169.0, C125122.0, andC44575.3 in GPa, and
r58960 kg/m3.

FIG. 2. Gray-scale representation of Re„C33(s1 ,s2)… for Cu~001!.
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the RW degenerates, the PSAW becomes a pure supersonic
two component surface acoustic wave~SAW!.

The method we have used in calculatingGi j
Q(x1 ,t), is to

make the replacement~33! and then evaluate the integral
~19! numerically for 250 values oft. This is consistent in
spirit with the numerical approach to inversion taken by a
number of authors~see Ref. 7 and papers cited therein!. Over
most of the range ofs2, C i j is slowly varying, but in isolated
regions there are the sharp RW and PSAW resonances, and
kinks at limiting branch slownesses to contend with. We
have dealt with this problem by dividing the range ofs2 into
a number of intervals, a thousand is more than sufficient, and
applying Rhomberg integration to each interval. It is only the
few intervals whereC i j is rapidly varying that more than
one Rhomberg iteration is required to achieve convergence.

The above method has the advantage of simplicity and
generality. With the coding we have implemented, it takes in
the region of 15 min on a 133-MHz pentium personal com-
puter to generate surface response functions of the type dis-
played in this paper, but this time can be considerably re-
duced at the cost of rounding of the sharp features. For
instance, the response function for the fiber composite in Fig.
1 of Tewary and Fortunko14 can be reproduced in less than
one minute, or less still if fewer than 250 values oft are
taken. Bearing in mind that our coding has been set up for
general anisotropy, whereas that of Ref. 14 is specialized to
tetragonal symmetry, it appears that their and our algorithms
are comparable in numerical efficiency.

C. Wave arrival singularities

Figure 3~a! shows the surface response function
G33

Q (x15100 mm,x2 5 0,t) calculated for the~001! surface
of copper. The response is zero untilta523.1 ms, at which
moment there is a sudden downward kink corresponding to a
discontinuous change in velocity. This event is associated
with the sharp dip in Re(C33) at the limiting longitudinal
slowness labeleda in Fig. 2, which is a branch point in the
complex functionC33. The kinks inG33

Q at tb534.4ms and
tc540.2ms correspond to the limiting transverse slownesses
labeledb and c in Fig. 2. These are bulk wave arrival sin-
gularities, and correspond to points on the slowness surface
where the normal points in the observation direction. These
singularities propagate outwards from the point of excitation
at the bulk wave group velocities in that direction. Bulk
wave singularities and the analytic form they take in the
response functions of infinite anisotropic continua have been
surveyed in Ref. 1. It is evident that a surface response func-
tion must also show nonanalytic behavior as the integration
path s15const makes tangential contact with a limiting
slowness curve, since to one side it has a double intersection
with this curve, which is a locus of branch points, while on
the other side it has no intersection.

At the surface there are also RW wave arrival singulari-
ties. These are generally much more prominent than the bulk
wave arrivals, and so we devote more attention to them here.
RW arrivals are conditioned by tangency of the lines15sR

5tR /ux1u to the RW slowness curve. At the point of tan-
gency the RW group velocity, which is normal to the RW

FIG. 3. Surface responsesGi j
Q (x15100 mm,x25x350,t) for Cu~001!. ~a!

G33
Q , ~b! G11

Q , ~c! G13
Q . The insert in~a! shows a portion of the RW group

velocity curve near thê100& direction.
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slowness curve and hence parallel to thex1 axis, is of mag-
nitude 1/sR , and this is the velocity with which the wave
arrival singularity propagates along the surface. The analyti-
cal form ofGi j

Q for t neartR depends on whether the surface
of the half-space is a materials symmetry plane or not, and if
it is, whetheri j P(11,22,33,12,21) ori j P(13,23,31,32), and
finally whether the RW slowness curve is convex or concave
at the point of tangency.

Taking the surface to be a materials symmetry plane,
i j P(11,22,33,12,21), and the RW slowness curve to be con-
vex, then for t,tR the line s15t/ux1u intersects the RW
slowness curve twice near the point of tangency. In this re-
gion, the RW slowness is, in the parabolic approximation
with the origin fors2 located at the point of tangency, given
by s15sR2bs2

2 , whereb is the ~positive! curvature. From
Eqs. ~19!, ~23!, and ~30! the singular part ofGi j

Q thus takes
the form

Gi j
Q~x1 ,t !5

A

2pux1u E2`

`

ds2 dS bs2
22F tR2t

ux1u G D , ~34!

whereA52 i Ress5sR
C i j is a real constant for the purpose

of the integration~although it does depend on the direction
of x1). The integral is readily evaluated, yielding

Gi j
Q~x1 ,t !5

A

2pux1u1/2b1/2~ tR2t !1/2
. ~35!

For t.tR , C i j 50 in the region of tangency, and so the
integral vanishes andGi j

Q is given by the constant term in Eq.
~23!. The wave arrival is thus led by an inverse square-root
divergence and terminated by an infinite discontinuity. It
may happen that there are other intersections of the lines
5sR with the closed RW slowness curve, in which case there
is a background in the neighborhood oftR , which varies
linearly with t, but after the last intersection,Gi j

Q is exactly
constant.

If at the point of tangency the RW slowness curve is
concave, then the wave arrival is initiated by an infinite dis-
continuity, after whichGi j

Q varies as (t2tR)21/2.
For i j P(13,23,31,32) and the RW slowness curve con-

cave, reference to Eqs.~19!, ~23!, and ~30! shows that the
singular part ofGi j

Q takes the form

Gi j
Q~x1 ,t !5

A

2p2ux1u
P E

2`

` ds2

S bs2
21F tR2t

ux1u G D . ~36!

On integrating, fort,tR this yields Eq.~35!. For t.tR the
path of integration intersects the RW slowness curve twice,
and on taking the principal part of the integral, the result is
zero, so thatGi j

Q is constant. When the RW slowness curve is
convex, these conditions are reversed, and the divergence
follows the RW arrival.

In summary:

Gi j
Q~x1 ,t !55

A,

2pux1u1/2b1/2~ tR2t !1/2
, t,tR

A.

2p2ux1u
, t.tR ,

~37!

for i j P~11,22,33,12,21!, RW slowness curve convex,

i j P~13,23,31,32!, RW slowness curve convcave,

whereA. andA, are constants, and

Gi j
Q~x1 ,t !55

A,

2p2ux1u
, t,tR

A.

2pux1u1/2b1/2~ t2tR!1/2
, t.tR,

~38!

for i j P~11,22,33,12,21!, RW slowness curve concave,

i j P~13,23,31,32!, RW slowness curve convex.

The singular behavior displayed by the analytical solutions
for isotropic solids27,28 conforms to the above rules.

In the situation where the surface is not a materials sym-
metry plane, Ress5sR

C i j has both real and imaginary parts

for all i j , and it follows thatGi j
Q diverges on both sides of the

RW arrival in accordance with

Gi j
Q~x1 ,t !5

A:

2pux1u1/2ubu1/2utR2tu1/2
. ~39!

The above results are consistent with Willis’32 treatment of
RW arrival singularities.

In anisotropic solids the displacement leading or trailing
the RW arrival can vary enormously with direction. One
source of this variation is the factorA. In directions for
which the plane of polarization of the RW is perpendicular to
the i or j axis,A is zero. For alli j , A also vanishes at points
where the RW degenerates with the transonic state, as is
evident in Fig. 2.

A second source of variation is that the singular part of
the waveform is proportional toubu21/2, and hence the wave
intensity is proportional toubu21. Variation in intensity
through the curvature of the RW slowness curve in this way
is known as surface phonon focusing, and has been studied
theoretically by a number of authors.36–39 The effects have
been observed experimentally with laser generated ultrasonic
SAW18 and ballistic surface phonons.40

At points of inflection whereb50, the parabolic ap-
proximation for the RW slowness equation breaks down.
Taking x1 and s1 in the direction of the normal to the RW
slowness curve at the point of inflection, the RW slowness
equation to leading order now takes the forms15sR2gs2

3,
g5 constant. On integrating overs2, one readily establishes
that the singular part ofGi j

Q near the wave arrival has the
form

Gi j
Q~x1 ,t !5

A:

6pux1u1/3ugu1/3utR2tu2/3
. ~40!
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The inverse square-root dependence onx1 andb for normal
points, and the inverse third power dependence onx1 and
g for points of inflection, is a characteristic also of frequency
domain surface Green’s functions in the asymptotic far-field
limit.36,38,39

If the direction of thex1 axis is changed slightly, then
for one sense of rotation there are now two values ofs1 at
which tangency occurs, and thus two wave arrivals propagat-
ing at slightly different group velocities. For the opposite
sense of rotation there are no longer any points of tangency
near the inflection point, and so no wave arrivals. It follows
thereby that the point of inflection maps onto a cusp in the
group velocity curve. Criteria for the existence of cusps in
respect of the~100! and~111! surfaces of cubic crystals have
been established by Maznev and Every.41 Extending some
distance beyond the cusp, where there is no longer any wave
arrival in the strict sense, is a quasisingular feature which we
refer to as an eidolon.42 It has been observed for laser gen-
erated SAW by Maznevet al.43

Referring again to Fig. 3~a!, the sharp dip atte544.3ms
is a RW singularity having the analytic form~38!. The cur-
vature of the RW slowness curve near pointe is negative in
this case, and so the RW arrival is manifested as a sudden
dip followed by an initially steep continuous rise. The sharp
dip at t f549.5 ms is a RW singularity having the analytic
form ~37!. It is shaped the familiar way around as encoun-
tered in the response functionG33

Q of isotropic solids, be-
cause in this case the RW slowness curve nearf is convex.
Beyondt f , G33

Q is constant, because Re(C33) is zero. There
is a third RW singularity of the form~37! at td , but it shows
up very faintly in the calculated response because, as can be
seen in Fig. 2, pointd is very close to where the RW degen-
erates with the transonic state and becomes SH in character.
It also occurs very close to the transonic stated8, and it is
difficult to distinguish the two features from each other in
this plot. The inset in Fig. 3~a! shows the folded character of
the RW group velocity curve for Cu~001! near thex1 axis.
The three aforementioned wave arrivals correspond to the
three points where thex1 axis intersects this curve.

Figure 4 is a gray-scale representation of the dependence
of Re(C11) on s1 ands2. SinceC11 selects out thes1 axis,
this plot does not display mirror symmetry across the diago-
nal ~reflectingC11 across the diagonal in fact yieldsC22). In
the region of thes1 axis Re(C11) shows a prominent peak at
the L threshold~point a), rather than the dip as in the case of
Re(C33). This quasisurface L mode resonance has been re-
ported on before, and shows up in phonon imaging,44–46sur-
face Brillouin scattering47,48 and elsewhere. Towards thes2

axis this resonance disappears~point b) because the L mode
is polarized normal to thes1 axis and so does not contribute
to Re(C11). Here the L mode resonance is at a maximum in
Re(C22). The RW, which is composed of inhomogeneous
waves of predominantly L and T character, shows similar
behavior to the L resonance, being most intense near thes1

axis and fading to zero towards thes2 axis.
Figure 3~b! shows the surface response function

G11
Q (x15100 mm,x2 ,t) for Cu~001!. As can be seen, the L

bulk wave arrival is much more pronounced than forG33
Q ,

and the same applies to the bulk wave featurec, which can

be understood by reference to Fig. 4. The RW singularities
are the same way around as forG33

Q , except that in this case
featured is more pronounced ande much less so, which can
be understood by reference to Fig. 4.

Figure 3~c! shows the response functionG13
Q (x1

5100 mm,x2 ,t) for Cu~001!. One notes that in this case it
is the wave arrivale that is of type~37!, and the wave arrival
f that is of type~38!, so that after this last wave arrival there
is a smooth asymptotic approach to the static response. Be-
cause the (x1 ,x3) plane is a crystallographic symmetry plane
for Cu~001!, Gi j

Q(x1 ,t)50 for i j P12,21,32,23.

III. INTERIOR RESPONSE

Without loss of generality, we locate the observation
point in the (x1 ,x3) plane. In the case of homogeneous
waves corresponding to reals3

(n) , convergence of the integral
over v in Eq. ~16! is achieved through the replacement
(s1x11s3

(n)x32t)→(s1x11s3
(n)x32t1 i01). For inhomoge-

neous waves,s3
(n)x3 already comprises a positive imaginary

part, and convergence is assured without the abovemen-
tioned replacement. On integrating overv we obtain

Gi j
e ~x,t !52

1

2p3uxu
ReE

2`

`

d2si

3 (
n51

3 iL i j
~n!~si!

s1sinu1s3
~n!cosu2t/uxu1 i01

, ~41!

where tanu5x1 /x3. Essentially the same result is to be
found in Willis32 and in Wang and Achenbach,4 except that
they transform to radial and angular coordinates forsi .

A. Numerical integration

To obtain the full time dependence ofGi j (x,t) at a
given point x, s3

(n) and L i j
(n) have to be determined for a

two-dimensional~2D! manifold of pointssi . Discretization

FIG. 4. Gray-scale representation of Re„C11(s1 ,s2)… for Cu~001!.
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for numerical purposes reduces this to calculatings3
(n) and

L i j
(n) at say ;10331035106 points si , depending on the

required accuracy. Treating~41! in a simpleminded way as a
summation to obtainGi j (x,t) for say 240 values oft, in-
volves an additional 240333106'109 calculations, which
in our experience, takes almost twice as long as the calculat-
ing of s3

(n) andL i j
(n) . This is an unacceptable computational

overhead. This problem has long been recognized, and so-
phisticated methods have been proposed for overcoming it.
The Cagniard–de Hoop5 method and the method developed
by Willis32 and Wang and Achenbach,4 all reduce the evalu-
ation of Gi j (x,t) to a one-dimensional~1-D! angular inte-
gral, in which the integrand has to be determined iteratively
for each value oft. The latter authors accomplish this by
changing to radial and angular coordinates forsi and evalu-
ating the integral overusiu using the Cauchy residue theorem.
This requires finding all the zeros in the complex plane of the
denominator in~41! and determining the derivative of this
denominator with respect tousiu. Information aboutL i j

(n)

over the 2-D manifold is still required, but the overhead is
considerably reduced. The Cagniard–de Hoop method has
been widely applied to isotropic and transversely isotropic
solids,33 but only recently has it been implemented compu-
tationally to a significant extent for anisotropic solids.5

We have adopted the following numerical scheme for
calculatingGi j (x,t), which is much simpler than the above-
mentioned methods, but which nevertheless, like them, sub-
stantially reduces the computational overhead. We proceed
by casting~41! in the form

Gi j
e ~x,t !52

1

2p3uxu
ReH E

2`

` f i j ~u!du

u2t/uxu1 i01

1E
2`

`

duE
0

` gi j ~u,v !dv
u1 iv2t/uxu J , ~42!

where the auxiliary functionsf i j (u) andgi j (u,v) are given
by

f i j ~u!5 (
n51

3 E
Vn

d2sid~u2Re@s1sinu

1s3
~n!cosu#!iL i j

~n! , ~43!

gi j ~u,v !5 (
n51

3 E
Vn

8
d2sid~u2Re@s1 sin u

1s3
~n! cosu#!d~v2Im@s3

~n! cosu#!iL i j
~n! ,

~44!

whereVn and Vn
8 are the domains in the (s1 ,s2) plane in

which s3
(n) is real and complex, respectively.

All the detailed structure ofGi j (x,t) is derived from
f i j (u), while gi j (u,v), which tends linearly withv to zero
towards the axisv50, provides merely a smooth continuous
background. For numerical purposes we divide the lineu
into a large number~7680! of intervals, and generatef i j (u)
as a histogram of the accumulated values ofiL i j

(n) for each
interval in accordance with~43!. The 1-D integral in~42!,
evaluated for 240 values oft thereby involves;1.83106

calculations. In performing the 2-D integral, we divide the
upper half of the (u,v) plane into a course grid of 240
3120 cells, and generate a 2-D histogram in accordance
with ~44!, and then carry out the sum for the 240 values oft,
which involves;6.93106 calculations. The overhead is re-
duced in this way by more than a factor of 10 to less than
20% of the total computational time, which is acceptable.
The computational time for the interior response functions
presented below is under 15 min, which is less than that
required to generate the surface response functions provided
earlier, which nominally involve only 1-D numerical integra-
tion. The coding was kept general, with no advantage taken
of symmetry other than taking the sample surface to be a
materials symmetry plane to render Eq.~10! cubic in s3

2 .
It is appropriate at this point to comment on the relative

merits and disadvantages of the contour integration methods
mentioned earlier, as compared with the numerical approach
described above. One could argue that, as a matter of prin-
ciple, it is better to do as many integrations analytically as
possible and only resort to numerical integration as a last
resort. It might also be argued that integrals over a finite
domain, as in Wang and Achenbach,4 are more amenable to
evaluation than the infinite integrals in our approach. Suc-
cessful implementation of the method of Wang and Achen-
bach for a point force would, however, require the use of a
robust and efficient algorithm for locating the poles in the
complex plane, and for keeping track of the branch points
and Riemann cuts. These calculations would have to be em-
bedded in loops for varyingt and the angular coordinatef
of s. Divergences of the integrand in the integration overf
would have to be accommodated. We would anticipate that it
is nevertheless possible to achieve greater numerical effi-
ciency in this way, but at the cost of increased complexity in
the coding. In progressing onto more complicated systems
such as joined anisotropic half spaces and layered solids the
problems will be more acute, and there may be a clear ad-
vantage to adopting a simple numerical approach of the type
we have introduced here.

B. Results

Figure 5~a! shows calculated half-space response func-
tions G33

Q for hexagonal zinc, with the surface of the half-
space normal to the principal crystallographic axis. Three
observation points have been chosen, namelyx150, 5, and
10 mm, withx3525.8 mm, partly for comparison with pub-
lished experimental data.7 These display a number of bulk
wave arrival singularities labeled L~a discontinuity!, I ~a
logarithmic discontinuity!, S ~a discontinuity followed by a
gradual rise and leveling off!, X, and C. These wave arrivals
correspond to intersections of the viewing direction with
sheets of the wave surface of zinc as shown in Fig. 6. In the
epicentral direction,x150, the two quasi-T sheets I and S of
the wave surface intersect at a conical point, and the re-
sponse shows a negative square-root divergence, which is
associated with the phenomenon of external conical
refraction.23,24 The intersection F leads to a kink and a dis-
continuity which are barely perceptible in the response. For
x1510 mm the I and F wave arrivals coincide at C, at a
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cuspidal edge of the wave surface. There are no prominent
singular features associated with the pure-T sheet of the
wave surface, which is therefore not shown in Fig. 6.
Slightly preceding the S arrival is the head wave arrival H,
whose geometrical relation to the wave surface is shown in
Fig. 6. Zinc is somewhat unusual in that the head wave
merges with the wave surface at a point very close to the
conical point.25 These calculated responses are in very good
agreement with waveforms measured in zinc by Kim
et al.,49,50particularly with regard to the bulk and head wave
arrivals.

Figure 5~b! shows zinc infinite continuum response
functions calculated for the same configurations as above
using the method of Ref. 1. Overall the displacements are

reduced in magnitude by about a factor of 2 as compared
with those for the half-space, as one would expect. The bulk
wave arrivals are of the same analytic form and occur at the
same times as for the half-space. Head wave effects are of
course absent from the infinite continuum results. Another
difference is the constant displacement in the infinite con-
tinuum response following the last S arrival, as compared
with the asymptotic leveling off in the half-space response.

IV. CONCLUSIONS

We have derived integral expressions for the surface and
interior displacement response of a semi-infinite anisotropic
elastic continuum subjected to sudden surface loading. By
way of numerical example, calculated surface responses of
Cu~001! and interior responses of Zn~0001! have been pre-
sented. The surface responses display bulk and surface wave
arrival singularities, and the interior responses display bulk
and head wave arrival singularities. In follow up papers we
will use these methods in the interpretation of capillary frac-
ture generated waveforms measured in a number of different
materials.
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