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The elastodynamic response of a semi-infinite anisotropic solid
to sudden surface loading

A. G. Every, K. Y. Kim,® and A. A. Maznev”
University of the Witwatersrand, PO WITS 2050, South Africa

(Received 5 December 1996; accepted for publication 28 April 1997

Integral expressions are derived for the displacement response tensor of a semi-infinite anisotropic
elastic continuum of unrestricted symmetry to a concentrated force suddenly applied to its surface.
The surface response is reduced to a one-dimensional integral for numerical evaluation, while the
interior response is left as a two-dimensional integral. Calculated surface response functions for
Cu(001) are presented. These display multiple Rayleigh wave arrival singularities as well as bulk
wave arrivals. Calculated interior response functions fqoB201) are presented. These display bulk

and head wave arrivals. In followup papers these methods will be used in the interpretation of
capillary fracture generated waveforms measured in a number of different materials99®
Acoustical Society of AmericfS0001-496€27)06208-5

PACS numbers: 43.20.GANN]

INTRODUCTION intricate deformation of the integration contour to analyti-

There is growing interest in the dynamic response func_c:ally perform one of the integrations in the inverse transfor-

tions (Green’s functionsof elastically anisotropic Solidk14 mation. These celebrated solutions are to be found in a num-

Part of the reason for this is the need for simple and e1‘ficienPetr 0; t()jotﬁkscon th dyr;re]m:jlc;s Ofl S(I)“ta%fh Burridge ¢
computational algorithms for use in interpreting waveform &Xtended the L.agniard method to caiculate the response of an

data emanating from laser ultrasound experim&ité anisotropic half space to an impulsive line load at the sur-
transmission and reflection acoustic microsc&by? and’ face, and similar results have been obtained through direct

various other transient wave experimefitd For some pur- Integration by Maznev and Eve?y The Cagniard-de Hoop

poses it is sufficient to trace the progress of wave arrival@?t_hgg_has been extensively reviewed by van der_H|]°'€1en.
through the medium, making use of the ray Willis®<in a seminal paper obtained the formal solutions to a

approximatiort>=%7 In some cases detailed transmissionWide class of self similar problems for the anisotropic half-

waveforms measured in samples of finite geometry can bePace using Fourier and radon transforms, and this method

reasonably well accounted for with response functions calcu?@s been further developed by Wang and AchenBach.

lated for the infinite continuurhSurfaces do, however, have Paytori” has treated a number of problems for transversely
a modifying effect on transmission waveforms, and this genJsotroplc half-spaceg that admit closed—form solutions. Re-
erally becomes more pronounced as the sensing point &€ntly Mouradetal” have used the Cagniard-de Hoop
moved away from epicenter and head waves come intghethod to calculate the interior response of anisotropic half
prominencé® When the displacement is measured on theSPaces of hexagonal and cubic symmetry to point loading.
same surface as the applied force, the surface plays a detdibeir method reduces ultimately to a single angular integral
mining role in the response, which tends to be dominated b hich has to be done numerically. Another approach that has
one or more Rayleigh wave or pseudo-surface-wave arrivaldeen taken recently in calculating response functions of an-
This paper is the first in a three part series in which welsotropic half spaces is integral representation in terms of a
show that surface and also to a large extent transmissiofi function by Tewary and Fortunkg:**
waveforms, generated by a transient force acting on the sur- In this paper we establish methods for calculating the
face of an elastically anisotropic solid, conform well to dy- dynamic response at surface and interior points of a semi-
namic response functions calculated for the Semi_infiniténﬁnite anisotropic elastic continuum of unrestricted symme-
continuum. Reverberation effects arising from reflectionsiry to @ point load suddenly applied at the surface. Our ap-
from the opposite faces and sidewalls lie outside the scope d¢foach is to Fourier transform the equations of motion and
the present series of articles. boundary conditions with respect to time and the spatial co-
The problem of the displacement response of an elastirdinates parallel to the surface, solve the resulting algebraic
half-space to a point or line load suddenly applied at theequations, and then carry out the inverse transformation. The
surface has received wide attention over the years, since firstirface response is reduced to a one-dimensional integral for
being posed by Lam#’ Analytical solutions for point and numerical evaluation, while the interior response is left as a
line loading of an isotropic half-space were first obtained bytwo-dimensional integral. The method we use for computing
Cagniard by a method involving Laplace transformation andhese numerical integrals is able to cope with Rayleigh poles
and pseudo-surface-wave resonances. Our method of calcu-
dpresent address: Department of Theoretical and Applied Mechanics, Co!’?tmg the mt?rlor response, n tha.'t itis in the form of a tWO.
nell University, Ithaca, NY 14853. dimensional integral, is computationally somewhat less effi-
Ppresent address: Department of Chemistry, MIT, Cambridge, MA 02139.cient than the Cagniard—de Hoop methadd the method of
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Wang and Achenbachput it has the advantage of concep- wherek = (ky ,k;) is the projection of the wave vector in the
tual simplicity and ease of implementation. In our analysissurface andv is the angular frequency.
we give particular attention to wave arrival singularities, We seek a solution to the equations of moti@y and
which are a striking feature of both surface and interior re-boundary conditiong7) in the form of a superposition of
sponses. By way of illustrative numerical example, weoutgoing plane waves whose amplitudes are proportional to
present calculated surface responses fdi0CD) and interior  F;:
responses for Z000J). In subsequent papers in this series, B B 3
;/ve apply our method to the mterp_ret_atlon of cap|lla_ry frac- Ui(X,t)=f dzka dwE A}”)FjUi(”)
ure generated surface and transmission waveforms in a num- — —w  n=1
ber of different materials. )

x expli (ky-x+k§"xs— wt)}. (8)
|. METHOD OF CALCULATION For each value ok, andw, the third componerk; of k and

the polarization vectod are related by the Christoffel equa-
We consider a general anisotropic elastic continuum ofions

density p and elastic modulus tensa2;;, occupying the

half-space x;>0. A concentrated point forceF(t) (Cijusisk—p 6V, =0, 9
= (F;e(t)) with sign-function time dependence wheres=k/w, is the acoustic slowness vector agffare
1, t>0 roots of the characteristic sextic equation
t)= 1
«(t) -1, t<O0 ( ) deﬂcinSjSk_pé”l:O. (10)

acts at the origin on the otherwise free surface of the halfEquation(10) yields six solutions of which three are chosen
space. The displacement fial¢ix,t) in response to this force which correspond to outgoing waves, on the basis that they
is given by are either homogeneoubulk) waves with ray vectors di-
rected into the interior, or inhomogeneousvanescent

ui(x.)=Gj(x.OF;, @ \waves which decay into the interidt.The choice of outgo-
whereGjj(x,t) is the response function tensor. ing waves depends on the sign®f which will be restricted
Later in this paper we shift our attention to the responséo positive values, as explained later.
function Gi‘})(x,t) pertaining to a force with Heaviside step From the stress—strain relationship, o,
function time dependence =CimpgdUp/dXq, and Eq.(8) it follows that the surface trac-
O (t)= He(t)+ 1}, 3) tions are given by

3
which is more amenable to direct measurement. Rather than 130X X=0. 't):J dzkHJ do iwzl AJ(mFJ_BI(n)
— —© n=

calculatingGﬁ-)(x,t) directly, it is somewhat simpler to cal-
culateGj(x,t) and then obtairG (x,t) from

o e . ><exp{i(k||-x”—wt)}, (11
Gij (x,1) = 2{Gfj (x,t) = G{;(x,0)}. 4
where
This sidesteps thé function that occurs in the Fourier trans-
fé)m of @(t), but not. that ofe,(t). The time derlvafuve of Bf”)=2 Cs|qu§,n)qun)' (12)
ij (X,t) is the dynamic Green’s tensor of the medium. P

The displacement field is required to satisfy the equa- . M) (M _ .
tions of motion in which (s}"”,sy")=(sy,S,). Comparing(7) and (11) we

arrive at a set of three linear equations for the partial wave
&, &, - weighting factorsA{”

P?:Cijklm- X3>0, 3

subject to the boundary conditions on the stress tensor ngl ABI" = - 8y lamw?, (13
0 ,3(X,X3=0, , 1) = —F;5j 8(x)) (1), (6)  These have solution

wherex; = (X1,X) deno.tes the posit?on veptor in the §urface 1 1 adj B)("

and 8(x)) = 8(x1) (xz) is the two-dimensionab function. A=~ —— (B H"=— Yo W, (14)

The negative sign in Eq6) arises from the fact that the
surface tractionsrj5(x,x3=0, ,t) are in reaction to the ap- adj denoting matrix adjoint.

plied force. The initial conditions ar@ﬁ?(x,t)=o, t<O. From Eqgs.(2), (8), and(14) it follows that
Representing the boundary conditions in terms of their T

Fourier transform with respect tq andt, we have 1 (= = dw &
Giej(X,t): — —3] dzk“f - Ai(]-n)
© o Fj5jl 47°) - —x @S n=1
oy x5=0, 0= | o[ do-"2 o
—o —»  Arliw X expli(kj.x+ k3 x3— ot)}, (15
xexpli(kj.x— ot)}, (7)  where
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adj(B)}mUi(”) It follows immediately from Eqgs(4), (21), and(22) that the

= (16) response function pertaining to a Heaviside force is given by

I defB]
. € . . . . 1
Since Gjj(x,t) is real, it foﬂoﬂ\fvs that Lti temporal Fourier Gi("j)(xl,t>0)=— . Re[®;(t/x,)—D;;(0)}, (23)
transform has the propert®;* (x,w) =G (x,— »), where 272X,

the asterisk denotes complex conjugation. We exploit thi
property to restrict the integration over in (15) to the in-
terval[0,2], retaining only the real part. On further replac-
ing the integration variablé& by s =k /w we arrive at the
result

?Nhich, bearing in mind(19), is in the form of a one-
dimensional integral. For an isotropic solid this integral can
be evaluated analytically, but for an anisotropic solid, nu-
merical methods are in general required for its evaluation.

3
G (x.)=— %Rejw dzsufmdwE Ai(jn) A. Some properties of W ;(s)), ®;(s;), and Gf}’(xl,t)
2w - 0 n=1 For small values of; lying in the fully supersonic re-
gion enclosed by the curve of critical longitudin&l) slow-
a7 .
nesses in the surface, ag‘)(sﬂ) are real, and henc#;(s))
We treat the surface response and the response at interigy real. Outside this critical curve, some or all of t6g
points separately below. X(s)) are complex or pure imaginary, anig;(s)) is in gen-
eral complex.
Further restrictions are imposed by the presence of ma-
terials symmetry. In the case where theaxis lies along a
By choosing the coordinate system suitably one cantwofold axis or is perpendicular to a symmetry plane, the
without loss of generality, take the observation poirtb be  following conditions hold:

xexplio(s -x‘|+s(3“)x3—t)}.

Il. SURFACE RESPONSE

along thex, axis on the surface. Setting=x3=0, Eq.(17) The individual components o¥;; are either symmetric
simplifies to or antisymmetric with respect to reversal of the direction of
1 . . S
Gij(x1,t) =~ ;Refmdsljo do®;j;(s1) Wi(—s)="ii(s), ije(11,22,33,12,2), 2
Vi(—s)=—"Vi(s), ije(13,23,31,32
w expli (s — D)}, (18 i) =il e F
where Likewise, for reversal of the direction of; ,
B Gi(—x1, =G (x1,t), ije(11,22,33,12,2], 25
wy(s= [ dsawi(s). W9 GO =-GYxu.D, ije(13233132
and For larges lying in the subsonic region outside the
3 curve of limiting slow transverséST) slownesses, or tran-
sonic state as it is called, the solutions of , which
V(9= 3, AP(S). (20 =0

n=1 takes the form of a cubic is% because of symmetry, are all
of the form *iq or =(p*iq), p,q real. The three dis-
carded solutions are consequenthg{"’ = s{"* , wheres{"

are the three chosen solutions corresponding to outgoing

Convergence of the integral over is achieved by the re-
placement §;x;—t)—(s1X,—t+i0,). On integrating, one

obtains waves. It follows that
1 + o0 (I) _
Gf(Xg,1)=— —SRef 48 o100 )'( _”t(ili)o ) Wij(s5), —83(5)) ="Vij (5 ,85(8))- 26
2m> S 171 * It is evident from Eqgs(9), (10), (12), (17), and(20) that
N ’?f+mdsl—lm ij(sy) Wi (=5, = sa(§)) =~ Wij(§,.55(5)), @
27 —e (S ) at all points except wherB(" is singular. From Eqs(24),

(25), and (26) one thus infers that, in the subsonic region

+ XlRe @i (t/xq1) |, (21 away from singular points,
1

|x4]
with 2°[ denoting the principal value of the integral.
Using the fact that for negative timej(x,,t) is con- ij €(11,22,33,12,2],
stant, and settingj (—x;, —t)=Gjj(—x3,0), t>0, we ar- .o .
rive at the Kramers—Kronig-type relation i(g)="i(s) and ¥;(g) is real,
rm Im ®;i(sy) ij €(13,23,31,32
-

—w ds, S1X—t :mRecD”(t/Xl) In the subsonic region, for all except possibly a few

\Ifﬁ(q)z—\lf”(q‘) and W¥;;(s)) is pure imaginary,

(28)

e isolated directions of, there is a single Rayleigh surface
+27°Gjj(—x1,0). (220 wave(RW) corresponding to the vanishing of {B(s)| (see

1348 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997 Every et al.: Elastic half-space response 1348
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FIG. 1. ¥ 353 (s;=0.21us/mm,s;,) for the (001) surface of copper. Constants
for the calculation ar€,,=169.0, C,,=122.0, andC,,=75.3 in GPa, and
p=8960 kg/ni.

Ref. 35. This gives rise, for a given direction, to a simple
pole in¥;;(s)) atsg, which on being moved above the real
axis yields, fors; nearsg,

+i 775(8” - SR)} ,
(29)

where Re;sR\Ifij(sH) denotes the residue oFj;(s)) ats;
=sg. Hence fors nearsg,

Re(Wj(s)))~i m[Res s, Wij(5)18(s)~S),

Wij(s)~Res=s W (S){y‘( S SR

ij €(11,22,33,12,2), (30

Re(W;;(s)))~[Res_s ¥}, (Sn)]f’”( 5— sR> !
ij €(13,23,31,32

For larges;, beyond where the ling; =constant inter-
sects the RW slowness curve,

Re(Vij(5))=0, (Pij(s1))=0

and (31)

®;;(0)

277'2|X1|

Gij (x1,t)= =const

for ij e(11,22,33,12,21L

If, further, the (;,x3) plane is a materials symmetry
plane, then

Gij(x1,t)=0 for ij €(32,23,21,12 (32)

B. Numerical integration and results

For an anisotropic solid the integration owgrin (19) to

0.55

s, [010] (us/mm)

& f 055

s, [100] (us/mm)

FIG. 2. Gray-scale representation of (&4(s; ,S,)) for Cu(00).

axes are aligned along the principal crystallographic direc-
tions, and¥ ;5 is unchanged by a reversal in the sigrspfor

S,. The real part ofV 35 displays a sharp peak at 0.28/mm,
which is associated with a PSAW resonance. §0r0.43
us/imm, W44 is pure imaginary except for &-function sin-
gularity at 0.45us/mm, associated with the RW pole. Sharp
dips occur in Re¥ 35 at the limiting L and one of the lim-
iting fast transverséFT) slownesses.

A global picture is provided by Fig. 2, which portrays
the dependence of R#(33) on boths; ands, as a gray-scale
“image,” with degree of darkness corresponding to the mag-
nitude of Re33). To render the RW singularity visible, it
has been artificially broadened by making the replacement

Wag— U1V 33+ a), (33

where « is a small but finite positive number. A similar
effect can be achieved by ascribing a small imaginary part to
§,- The vertical line in this image represents the “line scan”
for the data in Fig. 1. The continuously shaded area in Fig. 2
comprises thel ;3 weighted projections; of the slowness
vectors of all bulk modes in the first quadrant, its outer
boundary being the so-called transonic state. The lines which
stand out as lighter and which partition this domain, lie on
the locus of limiting slownesses. This locus and the transonic
state are the projection on the;(s,) plane of points on the
three sheets of the slowness surface where the surface nor-
mal is parallel to the €;,s,) plane. Along thg110] direc-
tion, the diagonal in Fig. 2, the ST bulk modes are SH po-
larized normal to theX10) symmetry plane, and thus do not
contribute to Re¥ 33), as is evident from the fading of the

obtain®;; has, in general, to be done numerically, and theST modes in this region. The sharp RW resonance is most
method of integration has to cope with the RW poles and, irintense in the/100 directions, and fades away towards the

cases where they exist,
(PSAW) resonance¥* This point is brought out in Fig. 1,
which shows the dependence ®3; on s, for fixed s;
=0.21 us/mm for the(001) surface of copper. The reference

1349 J. Acoust. Soc. Am., Vol. 102, No. 3, September 1997

pseudo-surface-acoustic-wayé10] direction, where it degenerates with the transonic state.

In the region extending about 20° to either side of the
[120] direction there is a PSAW resonance lying within the
band of ST bulk modes. Exactly in th&10] direction where

Every et al.: Elastic half-space response 1349



the RW degenerates, the PSAW becomes a pure supersonis
two component surface acoustic wa\BAW).

The method we have used in calculat'@@(xl,t), is to
make the replacemenB3) and then evaluate the integral
(19) numerically for 250 values of. This is consistent in
spirit with the numerical approach to inversion taken by a
number of authorésee Ref. 7 and papers cited theje@ver
most of the range o, Vj; is slowly varying, but in isolated
regions there are the sharp RW and PSAW resonances, ant
kinks at limiting branch slownesses to contend with. We
have dealt with this problem by dividing the rangesgfinto
a number of intervals, a thousand is more than sufficient, and
applying Rhomberg integration to each interval. It is only the
few intervals where¥;; is rapidly varying that more than
one Rhomberg iteration is required to achieve convergence.

The above method has the advantage of simplicity and
generality. With the coding we have implemented, it takes in
the region of 15 min on a 133-MHz pentium personal com-
puter to generate surface response functions of the type dis-
played in this paper, but this time can be considerably re-
duced at the cost of rounding of the sharp features. For
instance, the response function for the fiber composite in Fig.
1 of Tewary and Fortunkd can be reproduced in less than
one minute, or less still if fewer than 250 valuestoére
taken. Bearing in mind that our coding has been set up for
general anisotropy, whereas that of Ref. 14 is specialized to
tetragonal symmetry, it appears that their and our algorithms
are comparable in numerical efficiency.

C. Wave arrival singularities

Figure 3a) shows the surface response function
Gg(xlzloo mmx, = 0;) calculated for thé001) surface
of copper. The response is zero untjE23.1 us, at which
moment there is a sudden downward kink corresponding to a
discontinuous change in velocity. This event is associated
with the sharp dip in Re¥35) at the limiting longitudinal
slowness labeled in Fig. 2, which is a branch point in the
complex function¥ 35. The kinks inGg3 att,=34.4 us and
t.=40.2 us correspond to the limiting transverse slownesses
labeledb andc in Fig. 2. These are bulk wave arrival sin-
gularities, and correspond to points on the slowness surface
where the normal points in the observation direction. These
singularities propagate outwards from the point of excitation
at the bulk wave group velocities in that direction. Bulk
wave singularities and the analytic form they take in the
response functions of infinite anisotropic continua have been
surveyed in Ref. 1. It is evident that a surface response func-
tion must also show nonanalytic behavior as the integration
path s;=const makes tangential contact with a limiting
slowness curve, since to one side it has a double intersection
with this curve, which is a locus of branch points, while on
the other side it has no intersection.

At the surface there are also RW wave arrival singulari-
ties. These are generally much more prominent than the bulk
wave arrivals, and so we devote more attention to them here.

10" m/N)

33

(€]

G

(@)

(102 m/N)

]
11

G

(b)

7~
£
g
=
s
Z

® 2

o

(©

30

-120

40

20

20

time (us)

40

60

4>'°

20

time (us)

40

60

20

time (us)

40

60

RW arrivals are conditioned by tangency of the Iqu= SR FIG. 3. Surface respons&;) (x,=100 mm,x,=x5=01) for Cu(001). (a)
=tr/|x;| to the RW slowness curve. At the point of tan- G&, (b) G%, (c) G,. The insert in(a) shows a portion of the RW group
gency the RW group velocity, which is normal to the RW velocity curve near th¢100 direction.
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slowness curve and hence parallel to ¥heaxis, is of mag- A
nitude 15z, and this is the velocity with which the wave R 7"
arrival singularity propagates along the surface. The analyti- GO(xy.1)= 2m|xq| "B (tr— 1) 37
cal form ofGi(]-) for t neartg depends on whether the surface 1o A
of the half-space is a materials symmetry plane or not, and if ETEE
it is, whetherij e (11,22,33,12,21) aij e (13,23,31,32), and 2%
finally wh_ether the RW slowness curve is convex or concavg, ij e(11,22,33,12,2L RW slowness curve convex,
at the point of tangency.

Taking the surface to be a materials symmetry plane, jje(13,23,31,32, RW slowness curve convcave,
ij €(11,22,33,12,21), and the RW slowness curve to be con-
vex, then fort<tg the line s;=t/|x,| intersects the Rw WhereA. andA_ are constants, and
slowness curve twice near the point of tangency. In this re-

t>tg,

gion, the RW slowness is, in the parabolic approximation A<
) o i . , t<tr
with the origin fors, located at the point of tangency, given o 272X,
by s;=Sg— BS2, Wherep is the (positive) curvature. From Gij(x1,1)= A (39
Egs.(19), (23), and(30) the singular part oG{} thus takes > | t>tg,
the fOfm 27T|X1|1/2ﬁ1/2(t_tR)1/2
A for ij €(11,22,33,12,2, RW slowness curve concave,
0 t —
0 _ 2 R
Gij(X,t) = 27T|X1|J'wd32 5( Bs;— x| ) (34 ij €(13,23,31,32, RW slowness curve convex.
The singular behavior displayed by the analytical solutions
whereA=— i Res_g W;; is a real constant for the purpose for isotropic soli_d§7'28 conforms to the above rules.
of the integration(although it does depend on the direction In the situation where the surface is not a materials sym-
of x;). The integral is readily evaluated, yielding metry plane, R&s_, W; has both real and imaginary parts
forallij, and it follows thatGﬁ-’ diverges on both sides of the
A RW arrival in accordance with
Gi(x1,t)= - . (35)
' 120121 _ 1112 A=
27|xq "M (tr— 1) GO(xy,t)= (39)

277|X1|1/2|I8|1/2|tR_t|1/2'

For t>tg, ¥;;=0 in Gt)h_e region of tangency, and so the The apove results are consistent with Wiflfstreatment of
integral vanishes an@j; is given by the constant term in EQ. Ry arrival singularities.

(23). The wave arrival is thus led by an inverse square-root | anisotropic solids the displacement leading or trailing
divergence and terminated by an infinite discontinuity. Itihne RW arrival can vary enormously with direction. One
may happen that there are other intersections of thesine goyrce of this variation is the factok. In directions for
=sg With the closed RW slowness curve, in which case thergyhch the plane of polarization of the RW is perpendicular to
is a background in the neighborhood &f, which varies  hej or j axis,A is zero. For alij, A also vanishes at points
linearly with t, but after the last intersectioﬂsﬁ-’ is exactly  \yhere the RW degenerates with the transonic state, as is
constant. _ _ evident in Fig. 2.

If at the point of tangency the RW slowness curve is A second source of variation is that the singular part of
concave, then the wave arrival is initiated by an infinite dis-yne \waveform is proportional th8| Y2, and hence the wave
continuity, after whichG;} varies as (—tg) ~*% intensity is proportional to|8| L. Variation in intensity

Forij €(13,23,31,32) and the RW slowness curve conhrough the curvature of the RW slowness curve in this way
cave, reference to Eq¢19), (23), and(30) shows that the  is known as surface phonon focusing, and has been studied
singular part ofG;; takes the form theoretically by a number of authot:*° The effects have

been observed experimentally with laser generated ultrasonic

. ds, SAW!8 and ballistic surface phonofi®.

A
Gi(]-)(Xl,t)Z 5 /)f ) (36) At points of inflection whereB=0, the parabolic ap-
27 x| - Bs2+ Rt ) proximation for the RW slowness equation breaks down.
x4 Taking x; ands; in the direction of the normal to the RW

slowness curve at the point of inflection, the RW slowness

On integrating, fort<tg this yields Eq.(35). Fort>tg the ~ €duation to leading order now takes the fosq=sg— S5,

path of integration intersects the RW slowness curve twicey= constant. On integrating ovep, one readily establishes

and on taking the principal part of the integral, the result isthat the singular part o6} near the wave arrival has the

zero, so thaGﬁ-’ is constant. When the RW slowness curve isform

convex, these conditions are reversed, and the divergence

follows the RW arrival. Gi(?(Xl,t)=
In summary:

Ao

6ol P Pt 1

(40)
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The inverse square-root dependencexgand 8 for normal 0.55
points, and the inverse third power dependencexpmand
v for points of inflection, is a characteristic also of frequency

domain surface Green’s functions in the asymptotic far-field
limit, 36-38:39

If the direction of thex; axis is changed slightly, then
for one sense of rotation there are now two values,oét
which tangency occurs, and thus two wave arrivals propagat-
ing at slightly different group velocities. For the opposite
sense of rotation there are no longer any points of tangency
near the inflection point, and so no wave arrivals. It follows
thereby that the point of inflection maps onto a cusp in the
group velocity curve. Criteria for the existence of cusps in
respect of th¢100) and(111) surfaces of cubic crystals have
been established by Maznev and Ev&nExtending some
distance beyond the cusp, where there is no longer any wave
arrival in the strict sense, is a quasisingular feature which we
refer to as an eidolof? It has been observed for laser gen-
erated SAW by Mazneet al*®

Referring again to Fig. (@), the sharp dip at.=44.3 us
is a RW singularity having the analytic fort38). The cur-
vature of the RW slowness curve near paris negative in

this case, and so the RW arrival is manifested as a sudden . . .
dip followed by an initially steep continuous rise. The sharp®€ understood by reference to Fig. 4. The RW singularities

dip att;=49.5 us is a RW singularity having the analytic are the same way around as @ES, except that in th_is case
form (37). It is shaped the familiar way around as encoun_featured is more pronounced a@much less so, which can
tered in the response functid®$, of isotropic solids, be- be understood by reference to Fig. 4. e
cause in this case the RW slowness curve rieiarconvex. Figure 3c) shows the response functio® y(x,

Beyondt,, G, is constant, because REfg) is zero. There 100 MMxz,t) for Cu(O0D). One notes that in this case it
is a third RW singularity of the forni37) atty, but it shows is the wave arrivak that is of type(37), and the wave arrival

up very faintly in the calculated response because, as can 6ethat is of type(38), SO that after this last wave arival there
seen in Fig. 2, poind is very close to where the RW degen- is a smooth asymptotic approach to the static response. Be-

erates with the transonic state and becomes SH in charact Iguge g‘; X ’ég) platne_lg ? crystallggzrf%r;czzymmetry plane
It also occurs very close to the transonic st@teand it is ' u00D, Gjj(x,,t)=0 forij €12,21,32,23.

difficult to distinguish the two features from each other in
this plot. The inset in Fig. @) shows the folded character of !ll. INTERIOR RESPONSE

s, [010] (us/mm)

0 a 0.55

s, [100] (us/mm)

FIG. 4. Gray-scale representation of (®g(s;,S,)) for Cu(002).

the RW group velocity curve for GQ01) near thex, axis. Without loss of generality, we locate the observation
The three aforementioned wave arrivals correspond to thSoint in the (,,x3) plane. In the case of homogeneous
three points where the; axis intersects this curve. waves corresponding to res{" , convergence of the integral

Figure4isagray-scalg representation of the depe'ndenqﬁ,er w in Eq. (16) is achieved through the replacement
of Re(¥;y ons; ands,. Since¥; selects out the, axis, (51Xq+58V%3—t) — ($,%; + S{Vx3—t+i0. ). For inhomoge-

this plot does not display mirror symmetry across the diagoq,qqus Wavessg”)x3 already comprises a positive imaginary
nal (reflectingW¥ ,, across the diagonal in fact yields,,). In

) ; ! part, and convergence is assured without the abovemen-
the region of thes; axis Re(t";;) shows a prominent peak at joned replacement. On integrating overwe obtain
the L thresholdpointa), rather than the dip as in the case of

Re(33). This quasisurface L mode resonance has been re- . 2

ported on before, and shows up in phonon imadhg®sur- Gij(x,t)=— 273X Re wd S|

face Brillouin scatterinf/**® and elsewhere. Towards tise

axis this resonance disappegpsint b) because the L mode 3 i/\i(jn)(%|)

is polarized normal to the; axis and so does not contribute X (41)

= i (n) —_ io
to Re@,,). Here the L mode resonance is at a maximum in 1=1 518ind+ s3Vcosh—t/[x| +10.

Re(¥,). The RW, which is composed of inhomogeneouswhere ta®=x,/x;. Essentially the same result is to be
waves of predominantly L and T character, shows similafound in Willis®? and in Wang and Achenbaétexcept that
behavior to the L resonance, being most intense neasithe they transform to radial and angular coordinatessfor

axis and fading to zero towards tlsg axis.

Figure 3b) shows the surface response function
G\ (x;=100 mmx,,t) for Cu001). As can be seen, the L To obtain the full time dependence @;;(x,t) at a
bulk wave arrival is much more pronounced than &,,  given pointx, s{” and Ai(j”) have to be determined for a
and the same applies to the bulk wave feairgvhich can  two-dimensional(2D) manifold of pointss;. Discretization

A. Numerical integration
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for numerical purposes reduces this to calculaty and
A at say ~10°x10°=10° points 5, depending on the

required accuracy. Treatir@l) in a simpleminded way as a

summation to obtairG;;(x,t) for say 240 values of, in-
volves an additional 2403x 10°~10° calculations, which

calculations. In performing the 2-D integral, we divide the
upper half of the §,v) plane into a course grid of 240

X120 cells, and generate a 2-D histogram in accordance
with (44), and then carry out the sum for the 240 values, of
which involves~6.9x 1 calculations. The overhead is re-

in our experience, takes almost twice as long as the calculaduced in this way by more than a factor of 10 to less than
ing of s{” and A{". This is an unacceptable computational 20% of the total computational time, which is acceptable.
overhead. This problem has long been recognized, and sdhe computational time for the interior response functions
phisticated methods have been proposed for overcoming ipresented below is under 15 min, which is less than that
The Cagniard—de Hodpmethod and the method developed required to generate the surface response functions provided
by Willis*? and Wang and Achenbaétall reduce the evalu- earlier, which nominally involve only 1-D numerical integra-
ation of Gjj(x,t) to a one-dimensionall-D) angular inte- tion. The coding was kept general, with no advantage taken
gral, in which the integrand has to be determined iterativelyof symmetry other than taking the sample surface to be a
for each value oft. The latter authors accomplish this by materials symmetry plane to render EfO) cubic in s3.
changing to radial and angular coordinates goand evalu- It is appropriate at this point to comment on the relative
ating the integral ovels| using the Cauchy residue theorem. merits and disadvantages of the contour integration methods
This requires finding all the zeros in the complex plane of thementioned earlier, as compared with the numerical approach
denominator in(41) and determining the derivative of this described above. One could argue that, as a matter of prin-
denominator with respect t@”- Information abOUtAi(jn) ciple, it is better to do as many integrations analytically as
over the 2-D manifold is still required, but the overhead ispossible and only resort to numerical integration as a last
considerably reduced. The Cagniard—de Hoop method hdésort. It might also be argued that integrals over a finite
been widely applied to isotropic and transversely isotropigdomain, as in Wang and Achenbathre more amenable to
solids?3 but only recently has it been implemented compu-évaluation than the infinite integrals in our approach. Suc-

tationally to a significant extent for anisotropic solis.

cessful implementation of the method of Wang and Achen-

We have adopted the following numerical scheme forbach for a point force would, however, require the use of a
calculatingG;; (x,t), which is much simpler than the above- robust and efficient algorithm for locating the poles in the
mentioned methods, but which nevertheless, like them, sulsomplex plane, and for keeping track of the branch points
stantially reduces the computational overhead. We procee@nd Riemann cuts. These calculations would have to be em-

by casting(41) in the form

G = 1 R fm fij(u)du
= 273|x| —U—t/|x]+i0,

+f du

where the auxiliary function$;;(u) andg;;(u,v) are given
by

* gjj(u,v)dv

oUtiv—t/|x| |’ 42

3
fij(U)=n§=}l fﬂ d?s;8(u— Re s;sind

+s§"cosa])iA{Y, (43

3
gij(uv)=2> f,dzs”é(u—Re[s1 sin 6
n=1Ja,

+s5" cos 8]) 8(v —Im[s§"” cos g])iA (",

(44)
where(, and Qn are the domains in thes{,s,) plane in
which s{" is real and complex, respectively.

All the detailed structure of5;;(x,t) is derived from
fij(u), while g;;(u,v), which tends linearly withy to zero

bedded in loops for varying and the angular coordinatg

of s. Divergences of the integrand in the integration oger
would have to be accommodated. We would anticipate that it
is nevertheless possible to achieve greater numerical effi-
ciency in this way, but at the cost of increased complexity in
the coding. In progressing onto more complicated systems
such as joined anisotropic half spaces and layered solids the
problems will be more acute, and there may be a clear ad-
vantage to adopting a simple numerical approach of the type
we have introduced here.

B. Results

Figure 5a) shows calculated half-space response func-
tions G4 for hexagonal zinc, with the surface of the half-
space normal to the principal crystallographic axis. Three
observation points have been chosen, namely0O, 5, and
10 mm, withxz=25.8 mm, partly for comparison with pub-
lished experimental dafaThese display a number of bulk
wave arrival singularities labeled [a discontinuity, | (a
logarithmic discontinuity, S (a discontinuity followed by a
gradual rise and leveling 9ffX, and C. These wave arrivals
correspond to intersections of the viewing direction with
sheets of the wave surface of zinc as shown in Fig. 6. In the
epicentral directionx; =0, the two quasi-T sheets | and S of

towards the axis =0, provides merely a smooth continuous the wave surface intersect at a conical point, and the re-
background. For numerical purposes we divide the line sponse shows a negative square-root divergence, which is

into a large numbe(7680 of intervals, and generatg; (u)
as a histogram of the accumulated valuesmﬁ“) for each
interval in accordance witli43). The 1-D integral in(42),
evaluated for 240 values df thereby involves~1.8x 10°
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associated with the phenomenon of external conical
refraction?®2* The intersection F leads to a kink and a dis-

continuity which are barely perceptible in the response. For
x1=10 mm the | and F wave arrivals coincide at C, at a
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(a) time (HS) FIG. 6. Zonal section of the gL and qT sheets of the wave surface of zinc.
100 ; " ' reduced in magnitude by about a factor of 2 as compared
; with those for the half-space, as one would expect. The bulk
! s : wave arrivals are of the same analytic form and occur at the
- S same times as for the half-space. Head wave effects are of
o b course absent from the infinite continuum results. Another
2 : x=10mm difference is the constant displacement in the infinite con-
E L _,---"’;;r tinuum response following the last S arrival, as compared
PR 0 f < /’ x=Smm ] with the asymptotic leveling off in the half-space response.
= A\
Y
C
X \ IV. CONCLUSIONS
(&) ‘"I x=0mm
I ] We have derived integral expressions for the surface and
-50 I interior displacement response of a semi-infinite anisotropic
elastic continuum subjected to sudden surface loading. By
X way of numerical example, calculated surface responses of
_100 , . : Cu(001) and interior responses of ZWB001) have been pre-
6 10 14 18 sented. The surface responses display bulk and surface wave
_ arrival singularities, and the interior responses display bulk
(b) time (ps) and head wave arrival singularities. In follow up papers we

will use these methods in the interpretation of capillary frac-
FIG. 5. (@) G (X; = XX, = Oxs = 25.8 mm for a (0001-oriented zinc ~ (Ure generated waveforms measured in a number of different

semi-infinite continuum at interior points=0 (epicentey, 5 mm, and 10 Materials.
mm. Constants for the calculation ar€,,=163.75C,,=36.28, C,3
=52.48C35=62.93, andC,,=38.68 in GPa, ang=7140 kg/m. (b) G,
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