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ABSTRACT 

This paper presenis various closed-form analytic formulas that relate 
elastic constants of elastically anisotropic solids with orthorhombic or 
higher symmetry to a group velocity of quasilongitudinal (Ql-) or 
quasitransverse (QT) mode propagating in an arbitrary direction of the 
symmetry planes of media. Simple equations relating the direction of a 
group velocity to that of the corresponding wave normal are also described 
for hoth Q L  and QT modes. Some useful applications of these relations are 
discussed: first, determination of group velocity surfaces and cuspidal 
features; second. determination of mixed-index elastic constants, given the 
pure-index elastic conslants ohtained in the symmeby and other directions; 
third, determination of all elastic constan& of a cubic medium with 
longitudinal group velocities measured at least in three different directions. 
Examples are provided with transversely isotropic zinc and cubic silicon 
crystals and an orthotropic Poly Ether Ether Ketone (PEEK) composite 
plate. It is demonstrated that givcn the numerous group velocity data, one 
can efficiently determine the elastic constants by firs! converting them i n 0  
phase velocity data and then applying a least squares optimi7ation method 
to the phase velocity data. 

1. INTRODUCTION 

Complcte detcrmination of all the elastic constants of a spccimcn by 
the plane war'c ultrasonic techniques usually rcquires two o p p o i l ~  faccs of 
the spccimen to be polished parallel to each other and orientcd in  various 
dircctions and rcly on phase velocity measurements [ I , ? ] .  This is usually 
achieved hy destructive qectioning of the specimen, which may be 
undesirable undcr certain circumstances. This difficulty may be 
circumvented by cinploying a point source and a point detcclor and 
meawring a group velocity in various directions. 

Hcrc we deal with only the group velocity data measurcd in 
symmetry planes, which yield analytically all h e  elastic constants by the 
formulas recently derived by Kim 131. In  an arbitrary direction of 
propagation there exist no closed-form analytic formulas that rclatc the 
group velocity to elastic conslants of a medium and dekrmination of elastic 
conslitnls from group velocity daka are in general carried out numerically 
141. He also derived the simple relationships between the directions of wave 
normal and group velocity in the corresponding symmetry planes for both 
quasilongitudinal (QL)  and quasitransverse (QT) modes. The relationships 
are very useful for identifying the features of ray surfaces and in particular 
those of a cusp in a specific direction. 

One major advanlage of using the symmetry plane wave specds is 
that thc measurements errors are minimized with these data in comparison 
with those of other measuremenis in non-symmetry directions. 

11. THEORETICAL BACKGROUNDS 

Lct us denote lh rcc  principal axcs of symmctry of an orthorhombic 
medium by xi, x 2 ,  and x3 directions. Essentially identical relations bctween 
the clastic conslants and sound wave speed can k found for waves traveling 
in the three symmetry planes. i.e., xIxz, xzxJ. and xIxh by h e  proper rotation 
of indices. Therefore, consider a wave traveling. for example, in the xix, 
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plane with iL.s wave normal n and group velocity V, oriented at angles 8and 
(, respectively, to the x3 axis. The positive sense of both Band c is taken in 
a clockwise direction from the x ,  axis. Because of h e  reflection symmetry 
of the xlxj plane across the x I  axis for media of orthorhombic or higher 
symmetry. we restrict without loss of generality the range of both and 8 
to -90" I c.0 S 90'. The elastic properties of an orthorhombic medium are 
characterired with nine elastic constants: C i l ,  C22, C,,. CM. Css. CW, C12. 

C13, and c23. 
The phase and group velocities coincide in the principal symmetry 

directions and the rcladons bctween the wave speeds in symmetry directions 
and elastic constants arc decribcd by many authors [5 ,6 ] .  The pure index 
elastic constants are usually ohtained from phase or group velocity data 
along the principal symmetry directions. 

A. Phase velocity formula5 for symmetry planes 

7 h e  pure index shear elastic moduli can k also determined from thc 
pure transverse (PT) modes propagating in  an arhitrary dircction of the 
symmeuy planes. For rxample, the following relation holds for the phase 
velocity of PT mode polari7ed in the x2 direction and traveling in thc xIx3 
plane: 

pV: = cM sin20 + C,  . (PT mode) ( I !  

Once the pure index elastic moduli C, C2?, C3).  Cd4, CS5. and CM 
arc determined by the method describcd above, the mixed index elastic 
moduli C I 2 ,  C 2 3 ,  and C : ,  can he ohtained from the phase velocity 
mcasurcment of either quasi-longitudinal (QL) or quasi-transverse (QT) 
mode propagating in the x:x2. x 2 x 3 .  and x l x l  planes. respectively. Again, we 
considcr a wave traveling in the xIx3 plane. Let's define for simplicity of 
nolation the following identities: 

The relations for the QL and QT modes are givcn by 

where the positive and negative signs in front of the squarc root of Eq. ( 3 )  
correspond to the QL and QT modes. respectively. The Eq. (3) relates the 
elastic constant C i 3  to the phase velocity of QL or QT mode propagating in 
an arbitrary direction in the xlx, Fymmetry plane. Suppose that for a wave 
normal specified by an angle 8. boh QL and QT phasc velocities, VQL and 
IbT. are known for the Same angle 8 .  Then, Eq. (3) can bc utilized to Icad 
to the following simple relations: 

p(v& + v&) = c,,, t (C,,, - c,,,) sinZ& ( 4 )  
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where the quanwy B is defined as 

B E cll-c33-- 2c:,+. (6) 

B. Group velocity formulas for symmetry planes 

A simple formula that rclalcs group velocity with Cis found for the 
F’T waves with shear hori7ontal (SH) polarization 13.51 and is written as 

Eq. (7) indicates that two shear ela5tic moduli Ca and C, can he obtained 
by measuring the group velocities of PT modes propagating at least in two 
dimerent directions. By performing similar experiments in the x1x2 and x2x3 
symmetry planes all shear elastic moduli C4.,. C55. and C6,, can be 
determined. 

Let’s define for simplicity of notation 

p I tan 8 ,  q = tan C ,  (8) 

Then it can be shown that B in Eq. (6) and the above D are related by 

Kim 131 derived the following Eqs. ( I  l)-(l3): 

(9) 

c;,- P3 + 4 ( B P 2  - c&) - B p  _+ (ql+ p - c33+ q)o = 0. (1 1) 

Eq. ( I  1) can be uscd to find the waw normal corresponding to a given 
group velocity dircction lying in  the same symmetry plane, and vice versa. 
D in Eq. (9) can he expressed as 

1 
= __ 

1 - PQ 

In  the above equation we choose the rcgion of p = tan0 where D is real and 
positive. Finally h e  relation for group velocity is given by 

The upper and lower signs either in for  in  T in Eqs. (1 1)-(13) apply to 
the QL and QT modes, respectively, except in the k sign in front of the 
square bracket for square roo( in Eq. (12). which applies to both QL and QT 
modes. 

Eq. (13) expresses the group velocity as a function o f p  = tan& when 
D is substituted by the expression on the right hand side of Eq. (12). 
Usually, experimentally or by other means as described in this section, the 
magnitude of group velocity VR , its dircction c ,  Cll,. Cl C33,. and C3]-, 
arc known. Then, Eq. (13) can be solvcd to find p = tan0, which makes D 
in Eq. (12) real and positive. Once the value of this p = tan0 is found, one 

can obtain the values of D. B , C13,. and finally C13. using Eqs. (12). ( IO) ,  
(6). and (2). rcspcctively. On the other hand, given Lhc known values of all 
elastic consunts of a medium. Eq. ( 1  1) combined with Eq. (13) prcdics the 
value of QL or QT group velocity in any direction in the symmeuy plane. 

Other elastic constants such as C,, and CI2  can he obtained by the 
proper rotation of indices in Eqs. ( l l ) - ( l3) ,  Note h a t  the formulas for 
various pure modes in the xj and xI symmetry directions are obtained by 
setting 0= < = V  and 0= c= 90’. respectively, in Eqs. (1). (3)-(5), (7), and 
( l l ) - ( l3 ) ,  The equations for pure L and T modes along the face-diagonal 
direction of a cubic medium are also contained in Eqs. (1 I)-( 13) as a special 
case of <= 45’. For extension of Eqs. (1 1)-(13) to higher symmelry groups 
and more dcdl, readers refer to Ref. 3. 

Let‘s consider elastic pulses of both QL and QT modes traveling in 
the (nl.nl,O]-type diagonal symmetry planes of tetragonal and cubic 
symmetry media. The directions of wave normal n and group velocity are 
specified by angles 0 and <to the x3-axis, respectively. It is shown in Ref. 3 
that exactly the same relations between V, ,  mc, tan@, and elastic moduli as 
those found in Eqs. ( l l ) - ( l3) ,  can be oblained. respectively, by simply 
replacing C11 by K, C55 by CU, CI1+ by K+. The quantities K, K+, and CII ,  
are now defined as 

K = (C11+Clz+2C&)/2, K* E K k C a ,  C ~ I *  I CI1kC44. (14) 

A group velocity formula for a PT wave traveling in the (nl.n,,OJ- 
type diagonal plane and polarized normal to the plane is found by replacing 
Cs by (Cll - C13R in Eq. (7). 

C. Conversion between phase and group velocities 

The normal surface is the pedal surface of the ray surface and 
conversely the ray surface is the envelope of planes drawn at right angles to 
the phase velocity V on the normal surface r5.61. The phase and group 
velocities propagating in the symmetry planes. which have heen discussed 
i n  Sections IIA and IIB, are related by 

V = V,. n: V =  V, cos rp= V, cos (c- B), (15) 

where rp denotes an angle between the dircctions or a wave normal and the 
corresponding group velocity and is given by 

Given many group velocity data measured along various directions in 
the symmetry plane, a statistical optimi7ation approach based on a curve- 
fitting to he described next may be more convenient in obtaining elastic 
constants than the method described in Section IIB. We follow the 
approaches of Kim et al. 171 Since we primarily deal with measured group 
velocity data, we pay our attention to the conversion from the group 
velocity to the corresponding phase velocity data. Combining Eq. (15) with 
Eq. (16). one obtains 

The dependence of group velocity on a directional angle < for a PT 
mode is given by Eq. (7). The conversion of PT mode group velocities in to  
phase velocities offers no advantage for determination of shear elastic 
moduli, as can he seen in Eqs. ( I )  and (7). We choose conveniently to f i t  
the group velocity data of both QL and QT modes in a polynomial form as 

where all the coefficients C, can be determined by a linear least squares 
method and he consmt c, represents the group velocity of QL or QT mode 
along the principal axis for which < = 0. With these coefficients thus 
dctermincd, one calculates thc phase velocities V ( e )  corresponding LO the 
group velocity data VJO. according to Eqs. (16)-(18), In case that either 
QL or QT phase velocity V ( 0 )  can be determined. we fit either of them i n t o  
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Eq. (3) by a nonlinear least squares method to obtain relevant elastic 
constants. On the other hand, when both QL and QT phase velocities can 
bc calculated for the same angle 0. i t  is much easier to fit both of them into 
Eqs. (4) and (5) using a much simpler linear least squares technique for 
determination of relevant elastic constants. For plate-shaped composite 
materials and crystals aligned, e.g.. in the x 3  direction normal U) the plate. 
C33 and CU can be easily obtained by measuring L and T wave speeds 
propagating normal to the plate. Then, one invokes Eq. (4) to find C,,,. 
C I I ,  and CII- .  Finally, from Eq. (5) one oblains E .  CI3, and C13. 

111. GROUP VELOCITY SURFACES, CUSPIDAL FEATURES and 
ELASTIC CONSTANTS OF ZINC 

Using a (0001)-oriented zinc disk of 75 mm diameter, 25. 8 mm 
thickness, and its density equal to 7134 kg/m3, Kim and Sachse [RI obtained 
the live elastic constants of zinc from lhe group-velocity data measured in 
two principal symmetry dircctions. They &e 

Cil = 163. 75, Clz = 36.278, Ci3 = 52.476, 

C33= 62.928. and C,= 38.677 CPa. 

, , , , , I I I  / [ I I ~ ~ I ' ' I '  

-Group Velocities 
n Phase Velocities 

Velocity (mm/,us) [ 1001 

Fig. 1 .  (010) secdon of group and phase velocity surfaces in zinc, 
where the measured group velocity data are juxtaposed. 

Using these data. Eqs. ( I )  and (7) for the PT mode, and Eqs. (3). ( I  I )  and 
(13) for the QL and QT modes, the (010) sections of group and pha.sc 
vclocity surface? in  zinc are plotted in Figure I ,  where the measured group 
vclocity data detailed in Ref. 9 are juxtaposed for comparison. Note that the 
group velocity section in Fig. I is virtually identical to that obtained by a 
Monte-Carlo calculation. For a given direction inside a cuspidal region, 
there arc five group velocities: one QL, one FT, and three QT modes which 
are fast QT (FQT). intermediate speed QT (IQT) and slow QT (SQT) 
modes. Using Eqs. (I 1) and (13) for QT mode, one find the group velocity 
dircction and magnitude of the cuspidal edge P, in Fig. I to be <= 21.5355' 
and V, = 2.55646 mmlp,  respcctivcly. The direction of the corresponding 
wave normal is calculated to bc 0 = - 9.303667'. Similarly, the direction of 
the wave normal Corresponding to the conical point along the [OOI] 
symmcuy direction in Fig. I ,  where the IQT and SQT branches cross, is 
found to bc 0 = t 24.5244' and the group velocity of the conical point is 
2.05998 mmlws. There exists a tlny cusp around thc [ 1001 direction, which 
is not visible in the resolution of Fig. 1 but is apparent on a great magnified 
scale. The accurate calculation of this tiny cuspidal features is very difficult 
to obtain numerically but easy to carry out using Eqs. (1 1) and (13). For 
example. the dircction of cuspidal edge measured from the (IOO] axis and its 
group velocity arc calculated to bc ( = ? 0.5687815' and V ,  = 2.32996 
mm/p.s. 

The elastic constants of zinc can be determined using the measured 
group velocity data shown in Fig. 1. The measured pure index elastic 
constants of zinc, C,,,  C33, and C,, are identical to those in Eq. (19). Using 

QL V, = 3 .910 mm/m at ( =  47.34' in Fig. 1 and Eqs. (12) and (13). one 
obtains CI3 = 52.52 GPa. Similarly, the IQT V,  = 2.293 mm/p and SQT V ,  
=1.899mm/p both atc=11.01' in Fig. 1 yieldC13equal to51.30GPaand 
53.30 GPa. These are in good agreement to the CI3 value listed in Eq. (19). 
Using the PT group velocities at c= 0' and 37.89'. Eq. (7). and the relation 
C66 = (C,, - CI2)/2 yields C44 = 38.68 GPa and C i z  = 36.30 GPa in 
excellent agreement with those in Eq. (19). 

An alternative approach is to use statistical optimization to detcmine 
the elastic constanls. For this purpose first fit QL, FQT, and IQT-SQT 
group velocity dam into Eq. (18) by setting N = 4 and determine their 
coefficients c. by a linear least .squares method. The IQT and SQT branches 
are in fact one smoothly joining branch when their reflected images are 
extended across the symmetry axis [OOI]. The coefficients c, of the QL and 
FQT branches yield respectively 

Then. one obtains c,,, and the phase velocities V(t7) of QL and QT modes 
using Eqs. (l5)-(17). Next. the quantities on the lcft hand side of Eqs. (4) 
and (5) versus sinZO are calculated and they are fitted into these equations 
by the linear least squares method U) determine Cli+. CIS+, C,,,  and Cl3. 
Using the C, found above and Ca = (C,, - C12)/2, C,, is obtained from the 
PT group velocity data by the linear least squares fit into Eq. (7). All five 
elastic constants of zinc thus delermined by the statistical linear 
optimization technique are Cl i  = 164.08, Clz = 37.33, Ci3 = 52.24, C3, = 
62.63, and Ckl = 38.82 GPa in excellent agreement with those in Eq. (19). 
Though computationally demanding, one may as well use a nonlinear least 
squares method. trying to minimize the number of elastic constants to be 
optimized. Using the Cd4 and C33 as determined right above and thc 
nonlinear least squares method, the converted QL V ( @  dah are fitled into 
Eq. (3) of the QL mode to obtain Cl1 = 163.66 GPa and Ci3 = 52.43 GPa. 
which are again in excellent agreement with those in Eq. (19). 

Kim and Sachse [8] derived an analytic cquation that relates C,,, = 
C,, + C, to the coefficient c, =2.051 m m / p  obtained from the fitting of the 
IQT and SQT group velocity data and it is expressed as 

which yields Cl3 = 52.82 GPa in good agreement with that in Eq (19). A 
relation similar to Eq. (21) is obtained for the corresponding conical p i n t  of 
the (nl .nl ,0) -type diagonal plane of cubic and tctragonal media by replacing 
C I I  by K, CSS by C,, Cli* by K+, the quantities defined in Eq. (14). 

1V. ELASTIC CONSTANTS OF CUBIC SILICON AND 
ORTHOTROPIC PEKK 

For cubic silicon a (001)-oricnted single crystal disk of 100 mm 
diameter and 49.15 mm thick was used to measure group velocities in 
various directions of the symmetry planes. c l I=p(v~)pL= 165.7 GPa and 

C,,, = P ( V ~ ) ~ ~ =  79.56 GPa are obtained from the PL and PT group 

velocity data measured in the [MI] direction and using p = 2332 kg/m3. 
The PL and F" group velocities in the < I  IO> direction ( c  = 45'), which are 

related to C i 2  by p(v : )pL=(c l l  +ciz + 2c,)/2 and p(V:),, = 

(Cii - C12)f2, yield C,, = 63.90 GPa. 
The QL group velocity 8.830 m m / p  is delermined from the QL 

mode arrival in Figure. 2 in the direction of < = 26.94' in the (010) plane. 
Using C l i  = 165.7 GPa and C, = 79.56 GPa as above, and Eqs. (12) and 
(13) for a cubic medium, one obtains C12 = 64.404 GPa in good agreement 
with the C l z  obtained above. Using the arrival of Ihe QT mode in Fig. 2 
leads to a similar result. It is also possible to determine all three elastic 
constants of silicon from the L mode group velocity data measured at l a s t  
in three different directions in b e  symmetry plane as the L mode arrival is 
unambiguously and accurately identified as a point at which the signal first 
jumps out of noise level. Using the above PL group velocity data in the 

1994 ULTRASONICS SYMPOSIUM - 913 

Authorized licensed use limited to: Cornell University Library. Downloaded on May 07,2022 at 13:32:52 UTC from IEEE Xplore.  Restrictions apply. 



IO01 J and < I  IO> direction?, that of lhc QL mode in Fig. 2, and Eqs. (12) 
and (13 ) .  yields C , ,  = 50.54 GPa and Cd4 = 86.24 GPa, which are in 
substantial crror It is shown in Ref. 3 that very precise mcawrcmcnts of 
wavc spceds with error less than 0.01 % are required to obtain the elastic 
constants with error less than a few %. 

Displ Signal a t  2 5  rnm in ihe (1001 Dir 

:;CO;, 43 2 rnm thick 04[ 

- O o 3 1  I 

i 
0 001 

I QL 

5 10 15 
-001 1 -,-U- 

0 
Time (,us) 

Fig. 2. Displacement signal detected at (= 26.94’ 
on the (010) plane in a silicon disk specimen 

A small dimple found around 9.5 jfs in Fig. 2 is caused by h e  arrival 
of nearly SH polarized Cast transverse (IT) modes which travel at a group 
velocity indistinguishably close to (C&p)’a. Note that using the arrivals of 
QL, FT, and QT modes in one directional signal of Fig. 2, it is possible to 
determine all thrw elastic constants of cubic silicon. It is shown by Kim et 
al. [ 101 that all lhrec clastic constants of silicon can be easily and accuralely 
dcicrmincd from onc broadband signal propagating in thc <100> dircction. 

ic Capillary Frncture or S PZT Source: v Lor S PZT Iletector 

Fig. 3. Geometric configurations o r a  PEEK spccimcn. its principal 
axes wilh lhe dctcctor and scanning sourccs 

A geometric configuration of a fiber-reinforced PEEK thin plate 
specimcn with dctector and scanning sourcc is shown in Figure. 3. The 
composite specimen has 30 9/0 weight fraction of the carbon fibers, the 
density of i500 kgfm’, thickness t =3.26 mm. and three principal symmetry 
directions along the x i ,  x2,  and x g  directions. Various combinations of a 
glass capillary, L and shear (S) modc PZT source and dctcctor arc used to 
determine the clastic consLilnLs. First. C33 = 10.65 CiPa is obtaincd from the 
PL group vclocity in thc x,-thickncss dircction. The surhcc skimming 
pseudo L mode group vclocitics in thc x ,  and x2 dircctions on the surface 
yield respectively C, ,  = 28.52 GPa and C22 = 15.21 GPa. Next, using the 
PT group velocities measured with S PZT source and S PZT detector in 
various directions of the x , x ,  and x2xg symmetry planes and Eq. (7), one 
obtains C, = 2.23 GPa and C55 = 2.41 GPa. and C, = 5.71 GPa. A detailed 
description of obtaining PT group velocities i s  given elsewhere (7.1 1,121. 
Using Eqs. (12) and (13). Cl2 = 7.70 GPa is calculated from the surface 
skimming pseudo L group velocities in various directions on the x ,x2  
surface. Finally, C1g = 6.00 GPa and C23 = 7.65 GPa are obtained from the 
QL group velocities along various directions in the ~ 1 x 3  and x2xj planes. 

The calculated Young’s modulus in the xI direction , obtained using the 
above clastic constants, is 24.0 GPa. which compares well with the Young’s 
modulus obtained by the static tension test performed in the same direction. 

The meawrement of the elastic constants of glass and carbon fiber 
reinforced PEEK specimens is descnbed in detail by Kim et al. L I Z ] .  

V. CONCLUSIONS 

We have demonstrated various novel techniques by which the elastic 
constants of anisotropic solids are analytically determined from the group 
velocity data measured along arbilrary directions i n  the symmeuy planes. 
The usefulness of this analytical technique was illustrated with the 
specimens of transversely isotropic zinc, cubic silicon, and onhouopic 
PEEK. The first technique is a direct method which calculates the elastic 
constant from the group velocity data .  The other technique is an indirect 
approach adapted to numerous group velocity data. It first converts the 
group velocity data into phase velocity data, and then uses least squares 
methods to obtain the elastic constants. I t  is  also shown that a simple 
rclationship derived between the directions of wave normal and group 
velocity in the corresponding symmetry planes is very useful for 
investigation of the features of the normal and group velocity surfaces 
within and without a cuspidal region. 
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