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ABSTRACT

This paper presents various closed-form analytic formulas that relate
elastic constants of elastically anisotropic solids with orthorhombic or
higher symmetry 10 a group velocity of quasilongitudinal (QL) or
quasitransverse (QT) mode propagating in an asbitrary direction of the
symmetry planes of media. Simple equations relating the direction of a
group velocity to that of the corresponding wave normal are also described
for both QL and QT modes. Somc useful applications of these relations are
discussed: first, determination of group velocity surfaces and cuspidal
fcatures; second, determination of mixed-index elastic constants, given the
pure-index elastic constants obtained in the symmetry and other directions;
third, determination of all elastic constants of a cubic medium with
longitudinal group velocitics measured at least in three different directions.
Examples are provided with transversely isotropic zinc and cubic silicon
crystals and an orthotropic Poly Ether Ether Ketone (PEEK) composite
plate. Tt is demonstrated that given the numerous group velocity data, one
can efficiently determine the clastic constants by first converting them into
phasc velocity data and then applying a least squares optimization method
to the phase velocity data.

1. INTRODUCTION

Complete determination of all the elastic constants of a specimen by
the planc wave ultrasonic techniques usually requires two opposite faces of
the specimen to be polished parallel to cach other and oriented in various
directions and rely on phase velocity measurements [1,2]. This is usually
achicved by destructive sectioning of the specimen, which may be
undesirable under certain circumstances.  This difficulty may be
circumvented by employing a point source and a point detector and
measuring a group velocity in various directions.

Here we deal with only the group velocity data measured in
symmetry planes, which yicld analytically all the clastic constants by the
formulas recently derived by Kim {3]. In an arbitrary direction of
propagation there exist no closed-form analytic formulas that relate the
group velocity to elastic constants of a medium and determination of elastic
constants from group velocity data are in gencral carried out numerically
[4]. He also derived the simple relationships between the directions of wave
normal and group velocity in the corresponding symmetry planes for both
quasilongitudinal (QL) and quasitransverse (QT) modes. The relationships
are very useful for identifying the features of ray surfaces and in particular
those of a cusp in a specific direction.

One major advantage of using the symmetry plane wave speeds is
that thc measurements errors are minimized with these data in comparison
with those of other measurements in non-symmeltry directions.

Il THEORETICAL BACKGROUNDS

Let us denote three principal axes of symmetry of an orthorhombic
medium by x,, x,, and x; directions. Essentially identical relations between
the elastic constants and sound wave speed can be found for waves traveling
in the three symmetry planes, i.e., x,X;, X,x3, and x,x;, by the proper rotation
of indices. Therefore, consider a wave traveling, for example, in the x;x3
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plane with its wave normal n and group velocity V, oriented at angles 6 and
¢, respectively, to the x; axis. The positive sense of both 8 and { is taken in
a clockwise direction from the x5 axis. Because of the reflection symmetry
of the x,x3 planc across the x; axis for media of orthorhombic or higher
symmetry, we restrict without loss of generality the range of both { and 6
to —90° < £,8 < 90°. The elastic properties of an orthorhombic medium are
characterized with nine elastic constants: Cyy, Ca3, Ca3, Ca4, Cs5. Ces Cia.
C];, and C23.

The phase and group velocities coincide in the principal symmetry
directions and the rclations between the wave speeds in symmetry dircctions
and elastic constants are described by many authors [5,6]. The pure index
elastic constants arc usually obtained from phase or group velocity data
along the principal symmetry directions.

A. Phase velocity formulas for symmetry planes

The pure index shear clastic moduli can be also determined from the
pure transverse (PT) modes propagating in an arbitrary direction of the
symmetry planes. For example, the following relation holds for the phase
velocity of PT mode polarized in the x, dircction and traveling in the x,x;
plane:

PVE= Ceesin?8 + Cosc0s?8 . (PT mode) (h

Once the pure index elastic moduli €y, Cya, Ca3, Cus, Css, and Cyg
arc determined by the method described above, the mixed index elastic
moduli Cy,, Cj3, and C .4 can be obtained from the phase veclocity
measurement of either quasi-longitudinal (QL) or gquasi-transverse (QT)
mode propagating in the x;x,, x,x3, and x x5 plancs, respectively. Again, we
consider a wave traveling in the x;x; plane. Let's define for simplicity of
notation the following identities:

Cin= CiatGss @)

Cny = 0t Csst Gy = Ct Gsst

The relations for the QL and QT modes are given by
2pV§L_QT =Cyp, 8in® @ +Cyy, cOs> 6 £

12

[(C“_sin2 0 - C33vcos2 9)2 + 4(?,23¢ sin’ Bcos? 6} ,

where the positive and negative signs in front of the squarce root of Eq. (3)
correspond to the QL and QT modes, respectively. The Eq. (3) relates the
elastic constant Cy5 to the phase velocity of QL or QT mode propagating in
an arbitrary dircction in the x;xy symmetry planc. Suppose that for a wave
normal specified by an angle 8, both QL and QT phase velocitics, Vo, and
Vor, arc known for the same angle 8. Then, Eq. (3) can be utilized (o Icad
1o the following simple relations:

p VéL + V21)= Cyae+ (Ch1e = Ciad) sin® @, (4)
Q
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pz(vczil- - Vér)

5)
=Ch -2(B+CL)sin?0+(Cl_+2B+ Ch )sin" @,
where the quantity B is defined as
- 2
B =C|1—C33—_2Cn+- (©)

B. Group velocity formulas for symmetry planes

A simple formula that relates group velocity with {is found for the
PT waves with shear horizontal (SH) polarization (3,5] and is written as

1 _ sinZC+ cos’ ¢

17 C C (PT modc) )
Lk &6 a4

Eq. (7) indicates that two shcar clastic moduli Ca4 and Cg can be obtained
by measuring the group velocitics of PT modcs propagating at least in two
different directions. By performing similar experiments in the x,x; and x,x;
symmetry planes all shear elastic moduli C44, Css, and Cgg can be
determined.

Let's define for simplicity of notation

p=tan @, g=tan{, 8

B ) 2 172
b= [(Cn—p - C;;-) +4C3, pZ] >0. ®
Then it can be shown that B in Eq. (6) and the above D are related by

B=— (Ci_p*' +Ci,_~ D). (10

27
Kim {3) derived the following Egs. (11)-(13):
Ci.p+q(Bp*-C}.)-Bp%(C,,p-Cy,q)D=0. (1)

Eq. (11) can be used to find the wave normal corresponding to a given
group velocity direction lying in the same symmectry plane, and vice versa.
D in Eq. (9) can be expressed as

1

D(p)= 7
- pq
p(iCJZHq;CIHP) - (12)
172
* [p2(Cu.q —Cup) - (1-p*d*)(Cip' - CL. )] /

In the above equation we choose the region of p = tan@ wherc D is real and
positive. Finally the relation for group velocity is given by

PV2 = (1 +q2)(C]2,_p" -Gy ¥ 2C,. D - D2)2
’ SDZ(Clupz‘*’Cu*iD)

(13

The upper and lower signs cither in or in F in Egs. (11)-(13) apply to
the QL and QT modes, respectively, except in the £ sign in front of the
square bracket for square root in Eq. (12), which applics to both QL and QT
modes.

i Eq. (13) expresses the group velocity as a function of p = 1an8, when
D is substituted by the expression on the right hand side of Eq. (12).
Usually, experimentally or by other means as described in this section, the
magnitude of group velocity V, | its dircction C i Crioy oz and Gy,
arc known. Then, Eq. (13) can be solved 1o find p = and, which makes D
in Eq. (12) real and positive. Once the value of this p = tan6 is found, one
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can obtain the values of D, B , C\a,, and finally C,3, using Eqs. (12), (10),
(6), and (2), respectively. On the other hand, given the known valucs of all
elastic constants of a medium, Eq. (11) combined with Eq. (13) predicts the
value of QL or QT group velocity in any direction in the symmetry plane.

Other elastic constants such as C,, and Cy; can be obtained by the
proper rotation of indices in Eqgs. (11)-(13). Note that the formulas for
various pure modes in the x, and x, symmetry directions are obtained by
setting 8= { =0 and 6= { = 90", respectively, in Egs. (1), (3)-(5). (7), and
(11)-(13). The equations for pure L and T modes along the face-diagonal
direction of a cubic medium are also contained in Egs. (11)-(13) as a special
case of {=45". For extension of Eqgs. (11)-(13) to higher symmetry groups
and more detail, readers refer to Ref. 3.

Let's consider elastic pulses of both QL and QT modes traveling in
the {n,,n;,0)-type diagonal symmetry planes of tetragonal and cubic
symmetry media. The directions of wave normal n and group velocity are
specified by angles 8 and { to the x;-axis, respectively. It is shown in Ref. 3
that exactly the same relations between V,, tan{, tan @, and elastic moduli as
those found in Egs. (11)-(13), can be oblained, respectively, by simply
replacing Cyy by K, Css by Cus, Cy12 by K. The quantities K, Ky, and C 13
are now defined as

K=(@Cn+Cia+2Ce)2, Ke EK+Cu, Cne = CitCa (14)

A group velocity formula for a PT wave traveling in the {n,,n;,0}-
type diagonal plane and polarized normal to the plane is found by replacing
Ces by (C1y — G22I Eq. (7).

C. Conversion between phase and group velocities

The normal surface is the pedal surface of the ray surface and
conversely the ray surface is the envelope of planes drawn at right angles 10
the phase velocity V on the normal surface [5,6). The phase and group
velocities propagating in the symmetry planes, which have been discussed
in Sections I1A and 1IB, are related by

V=V, n; V=V,cos p=V, cos ({- 6), (15)
where @ denotes an angle between the directions of a wave normal and the
corresponding group velocity and is given by

= = g (16)
vde v, d

Given many group velocity data measured along various directions in
the symmetry plane, a statistical optimization approach based on a curve-
fitting to be described next may be more convenient in obtaining elastic
constants than the method described in Section 11B. We follow the
approaches of Kim et al. [7] Since we primarily deal with measured group
velocity dala, we pay our attention to the conversion from the group
velocity to the corresponding phase velocity data. Combining Eq. (15) with
Eq. (16), one obtains

VZ

V= £ = an
Vi (av,a)

The dependence of group velocity on a directional angle { for a PT
mode is given by Eq. (7). The conversion of PT modc group velocities into
phase velocities offers no advantage for determination of shear elastic
moduli, as can be scen in Egs. (1) and (7). We choose conveniently to fit
the group velocity data of both QL and QT modes in a polynomial form as

N
Vo= 2.6.0" 08)

a=0

where all the coefficients ¢, can be dctermined by a lincar least squares
method and the constant ¢, represents the group velocity of QL or QT mode
along the principal axis for which { = 0. With these coefficients thus
determined, one calculates the phase velocitics V() corresponding 10 the
group velocity data V,({). according to Egqs. (16)-(18). In case that cither
QL or QT phase velocity V(@) can be determined, we fit either of them into
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Eq. (3) by a nonlinear least squarcs mcthod 1o obtain relevant clastic
constants. On the other hand, when both QL and QT phase velocitics can
be calculated for the same angle 8, it is much easier to fit both of them into
Eqgs. (4) and (5) using a much simpler linear least squares technique for
dctermination of relevant elastic constants. For plate-shaped composite
materials and crystals aligned, e.g., in the x; direction normal to the plate,
C»3 and Caq can be casily obtained by measuring L and T wave speeds
propagating normal to the plate. Then, one invokes Eq. (4) to find Cyias
Ci..and Cy,_. Finally, from Eq. (5) one obtains 8, Cy3,. and Cy3.

1I1. GROUP VELOCITY SURFACES, CUSPIDAL FEATURES and
ELASTIC CONSTANTS OF ZINC

Using a (0001)-oriented zinc disk of 75 mm diameter, 25. 8 mm
thickness, and its density equal to 7134 kg/m3, Kim and Sachse [8) obtained
the five elastic constants of zinc from the group-velocity data measvred in
two principal symmetry directions. They are

Cyy = 163.75, C1p = 36.278, Cyy = 52.476,
(19)
Cy3= 62928, and Cyy=38.677 GPa.
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Fig. 1. (010) section of group and phase velocity surfaces in zinc,
where the measured group velocity data are juxtaposed.

Using these data, Egs. (1) and (7) for the PT mode, and Eqgs. (3), (11} and
(13) for the QL and QT modes, the (010) sections of group and phase
velocity surfaces in zine are plotied in Figure 1, where the measured group
velocity data detailed in Ref. 9 are juxtaposed for comparison. Note that the
group velocity section in Fig. 1 is virtually identical to that obtained by a
Monte-Carlo calculation. For a given direction inside a cuspidal region,
there are five group velocitics: one QL, one PT, and three QT modes which
arc fast QT (FQT), intermediate speed QT (IQT) and slow QT (SQT)
modes. Using Egs. (11) and (13} for QT mode, one find the group velocity
dircction and magnitude of the cuspidal edge P, in Fig. 1 to be {=21.5355°
and V, = 2.55646 mm/ys, respectively. The direction of the corresponding
wave normal is calculated 10 be 8 = - 9.303667°. Similarly, the dircction of
the wave normal corresponding to the conical point along the [001]
symmeltry direction in Fig. 1, where the IQT and SQT branches cross, is
found 10 be 8 = + 24.5244° and the group velocity of the conical point is
2.05998 mm/us. There exists a tiny cusp around the {100] direction, which
is not visible in the resolution of Fig. 1 but is apparent on a great magnified
scale. The accurate calculation of this tiny cuspidal features is very difficult
to obtain numerically but casy to carry out using Egs. (11) and (13). For
example, the direction of cuspidal edge measured from the [100] axis and its
group velocity are calculated to be { = + 0.5687815° and V, = 2.32996
mm/Ls.

The clastic constants of zinc can be determined using the measured
group velocity data shown in Fig. 1. The measured pure index elastic
constants of zinc, Cyy, Ca3, and Cs, are identical to those in Eq. (19). Using

QL V, =3 910 mm/us at { = 47.34" in Fig. 1 and Eqs. (12) and (13), onc
obtains C3 = 52.52 GPa. Similarly, the IQT V, = 2.293 mm/us and SQTV,
=1.899 mm/us both at { =11.01" in Fig. 1 yield C; equal to 51.30 GPa and
53.30 GPa. These are in good agreement to the C,5 value listed in Eq. (19).
Using the PT group velocities at {=0" and 37.89°, Eq. (7), and the relation
Ces = (C1) — C12)/2 yields C44 = 38.68 GPa and C,; = 36.30 GPa in
excellent agreement with those in Eq. (19).

An altermative approach is to use statistical optimization to determine
the clastic constants. For this purpose first fit QL, FQT, and IQT-SQT
group velocity data into Eq. (18) by setting N = 4 and determine their
coefficients ¢, by a linear least squares method. The IQT and SQT branches
are in fact one smoothly joining branch when their reflected images are
extended across the symmetry axis [001]. The coefficients ¢, of the QL and
FQT branches yield respectively

2

p(c] )QL=C33 and p(c})FQT:CM. (20)

Then, onc obtains C33t and the phase velocitics V(8) of QL and QT modes
using Eqs. (15)-(17). Next, the quantities on the Icft hand side of Eqgs. (4)
and (5) versus sin?@ are calculated and they are fitted into these equations
by the linear least squares method to determine Cyy., Cy3,, Cyy, and Cys.
Using the Cy4, found above and Cgg = (Cy; — C1,)/2, Cy; is obtained from the
PT group velocity data by the linear least squares fit into Eq. (7). All five
elastic constants of zinc thus determined by the statistical linear
optimization technique are C;; = 164.08, C;, = 3733, C13=5224,Cy3 =
62.63, and Cy4, = 38.82 GPa in excellent agreement with those in Eq. (19).
Though computationally demanding, one may as well use a nonlinear least
squares method, trying to minimize the number of elastic constants to be
optimized. Using the C44 and Cj; as determined right above and the
nonlinear least squares method, the converted QL V(6) data are fitted into
Eq. (3) of the QL mode to obtain Cy; = 163.66 GPa and C,; = 52.43 GPa,
which are again in excellent agreement with those in Eq. (19).

Kim and Sachse {8] decrived an analytic equation that relates Cy5, =
Cy3+ C 44 to the coefficient ¢, =2.051 mm/us obtained from the fitting of the
1QT and SQT group velocity data and it is expressed as

(Ciy + Cu)’ = C\Cyy + C, = pc(C, + C)
@n
2 2.2
+ Z[CIICM (Cyy —pe ) (Coy = pc; )] ,

which yiclds C;3 = 52.82 GPa in good agrecement with that in Eq. (19). A
relation similar to Eq. (21) is obtained for the corresponding conical point of
the {n,.n,,0}-type diagonal planc of cubic and ctragonal media by replacing
C1 by K, Css by Cas, Cy14 by K, the quantitics defined in Eq. (14).

1V. ELASTIC CONSTANTS OF CUBIC SILICON AND
ORTHOTROPIC PEEK

For cubic silicon a (001)-oriented single crystal disk of 100 mm
diameter and 49.15 mm thick was used t0 measure group velocities in

various directions of the symmetry planes. C,|= p(V:)PL= 165.7 GPa and

Cas =p(V:)PT= 79.56 GPa are obtained from the PL and PT group

velocity data measured in the {001] direction and using p = 2332 kg/m3.
The PL and PT group velocities in the <110> direction ({ = 45°), which are

related 10 Cy, by p(V,z)PL=(C” +C,+2C,)/2 and p(V:) =

PT
(Cy1 ~ C1)2, yicld €\, = 63.90 GPa.

The QL group velocity 8.830 mm/us is determined from the QL
mode arrival in Figure. 2 in the direction of { = 26.94° in the (010) planc.
Using Cyy = 165.7 GPa and C44 = 79.56 GPa as above, and Egs. (12) and
(13) for a cubic medium, one obtains C,; = 64.404 GPa in good agreement
with the Cy; obtaincd above. Using the arrival of the QT mode in Fig. 2
leads to a similar result. It is also possible to determine all three elastic
constants of silicon from the L mode group velocity data measured at least
in three different directions in the symmetry plane as the L mode arrival is
unambiguously and accurately identified as a point at which the signal first
jumps out of noise level. Using the above PL group velocity data in the
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{001) and <110> directions, that of the QL mode in Fig. 2, and Egs. (12)
and (13), yields Cy, = 50.54 GPa and C,4 = 86.24 GPa, which are in
substantial error. It is shown in Rel. 3 that very precise measurements of
wave speeds with error less than 0.01 % are required to obtain the clastic
constants with error Icss than a few %.
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Fig. 2. Displacement signal detecied at { = 26.94°
on the (010) plane in a silicon disk specimen

A small dimple found around 9.5 us in Fig. 2 is caused by the arrival
of nearly SH polarized fast transverse (FT) modes which travel at a group
velocity indistinguishably close 10 (Cyy/p)'”2. Note that using the arrivals of
QL, FT, and QT modes in one directional signal of Fig. 2, it is possible to
determine all three clastic constants of cubic silicon. It is shown by Kim et
al. [10] that all threc clastic constants of silicon can be casily and accurately
determined from one broadband signal propagating in the <100> direction.
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Fig. 3. Geometric conligurations of a PEEK specimen, its principal
axes with the detector and scanning sources

A geometric configuration of a fiber-reinforced PEEK thin plate
specimen with detector and scanning source is shown in Figure. 3. The
composite specimen has 30 % weight fraction of the carbon fibers, the
density of 1500 kg/m3, thickness t =3.26 mm, and three principal symmetry
directions along the x;, x;, and x5 directions. Various combinations of a
glass capillary, L and shear (S) mode PZT source and detector are used o
determine the elastic constants. First, Cy3 = 10.65 GPa is obtained (rom the
PL group vclocity in the xj-thickness direction. The surface skimming
pscudo L mode group vclocitics in the x; and x; dircctions on the surface
yield respectively Cy = 28.52 GPa and Cp, = 15.21 GPa. Next, using the
PT group velocitics measured with S PZT source and S PZT detector in
various directions of the x,x; and x,x; symmetry planes and Eq. (7), onc
obtains Cyy = 2.23 GPa and Css = 2.41 GPa, and Cg, = 5.71 GPa. A detailed
description of obtaining PT group velocilies is given elsewhere {7,11,12].
Using Egs. (12) and (13), C,5 = 7.70 GPa is calculated from the surface
skimming pseudo L group velocities in various directions on the x,x;
surface. Finally, C 3 = 6.00 GPa and Cy; = 7.65 GPa are obtained from the
QL group velocities along various directions in the x;x3 and x,xy planes.
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The calculated Young's modulus in the x, direction , obtained using the
abovc clastic constants, is 24.0 GPa, which compares well with the Young's
modulus obtained by the static tension test performed in the same direction.
The measurement of the clastic constants of glass and carbon fiber
reinforced PEEK specimens is described in detail by Kim et al. [12].

V. CONCLUSIONS

We have demonstrated various novel techniques by which the elastic
constants of anisotropic solids are analytically determined from the group
velocily data measured along arbitrary directions in the symmetry planes.
The usefulness of this analytical technique was illustrated with the
specimens of transversely isotropic zinc, cubic silicon, and orthotropic
PEEK. The first technique is a direct method which calculates the elastic
constant from the group velocity data . The other technique is an indirect
approach adapted to numerous group velocity data. It first converts the
group velocity data into phase velocity data, and then uses least squares
methods to obtain the elastic constants. It is also shown that a simple
relationship derived between the directions of wave normal and group
velocity in the corresponding symmetry planes is very useful for
investigation of the features of the normal and group velocity surfaces
within and without a cuspidal region.
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