
Fourth-Order Elastic Coefficients (FOEC) and  

Nonlinear Elastic Equations of State 

 

Kwang Yul Kima 

aplgllc.org, 130 Fieldstone Cir, Ithaca, NY 14850 

 

akyk1@cornell.edu 

aORCID ID: 0000-0003-1338-5301 

 

______________________________________________________________________________ 

Abstract 

This paper expresses the coefficients of equation of state of solids in terms of the combination of 

third-order and fourth-order elastic constants, which approximate the pressure derivative of bulk 

modulus well in second-order Murnaghan equation (ME2) and second-order Birch equation 

(BE2). 
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I. Introduction 

Isothermal equations of state of solids, such as first-order and second-order Murnaghan’s equations 

and first-order and second-order Birch’s equations are described in detail by Macdonald [1], 

Knopoff [2], and Murnaghan [3]. 

    Let V denote the volume of a specimen and P the pressure applied to it, at some constant 

temperature T. Then, an isothermal bulk modulus B is defined as 𝐵0 ≡ −𝑉(𝜕𝑃⁄𝜕𝑉) 𝑇 which at a 

given reference pressure P0 shall be 𝐵0 = − 𝑉0(𝜕𝑃 𝜕𝑉)𝑃 = 𝑃0 . The first- and second- pressure 

derivative of the bulk modulus evaluated at P = P0 shall be denoted by B/ and B0
// , respectively. 

𝑃0 is assumed to be one bar in this paper.  

     For convenience, the following notations are introduced. 

            𝜂 ≡ B0
/
       (1) ; 𝜑 ≡B0 B0

//         (2);              p = P – P0 ; 𝑧 ≡ 𝑝 ⁄𝐵0 ; χ ≡ 𝑉0⁄𝑉 ,             (3) 

all of which can be obtained from measurements of pressure and volume, combined with high 

precision ultrasonic wave-speeds. This author also introduces three deformation states 
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characterized by indices a, X, and I, where index a represents an undeformed stress-free state, 

index X characterizes a static finite deformation state from the undeformed stated a, and index I 

represents a small deformation state superposed on the finite deformation state X by a travelling 

ultrasonic wave. Most commonly used equations of state of solids are: (i) first-order Murnaghan 

(ME1); (ii) second order Murnaghan (ME2); (iii) first-order Birch (BE1); (iv) second-order Birch 

(BE2). The forms of ME1, ME2, BE1, and BE2 are described in Refs. 4-6, which indicate that all 

these equations of state can be specified with the knowledge of 𝜂 and 𝜓, with measurements of 

pressure P and volume χ ≡ 𝑉0⁄𝑉. BE1 and BE2 are favored by geologists in describing the interior 

of the planet earth. Barsh and Chang [7] on the basis of their ultrasonic data of cesium halides 

conclude that the three-parameter equation of Birch is superior to Keane’s equation. This paper 

will show in the next section, Theoretical Developments, that 𝑉/𝑉0 ≡ 𝑉𝑋/𝑉0 can be expressed in 

terms of the initial bulk modulus B0 and combination of fourth-order elastic constants. With the 

knowledge of the fourth-order elastic constants found in literatures [8], V/V0 will be calculated and 

compared with the experimentally obtained 𝜂 ≡ B0 , 𝜑 ≡ B0 B0
// , quantities defined by Eq. 1 and 

Eq. 2, respectively.  

 

II. Theoretical Developments  

     Let’s designate three indices ‘a’, ‘X’, and ‘x’ as respectively representing the stress-free state 

with density 𝜌𝑜 , the finitely deformed static initial state with density �̅�, and the final state with 

density 𝜌, which arises due to propagating small ultrasonic waves. Using vector notation these 

three states are described as 

  a: stress-free state with density 𝜌𝑜 

  X: finitely deformed initial static state with density �̅� 

  x: final state with density 𝜌 

 

The deformation from the initial static state is described by 

     u = x – X,             (1) 

which in the case of a uniform finite deformation with no-rotation involved can be written as 

   𝑢𝑖𝑗 =  
𝜕𝑢𝑖

𝜕𝑋𝑗
=  

𝜕𝑢𝑗

𝜕𝑋𝑖
=  𝑢𝑗𝑖  (no rotation) .           (2) 

Let’s define 𝛼𝑖𝑗 as 

𝛼𝑖𝑗 =  
𝜕𝑥𝑖

𝜕𝑎𝑗
=  

𝜕𝑥𝑗

𝜕𝑎𝑖
=  𝛼𝑗𝑖  

𝜕𝑥𝑖

𝜕𝑋𝑗
=  

𝜕𝑥𝑗

𝜕𝑋𝑖
 .         (3) 

Then, the Lagrangian strain 𝜂𝑖𝑗 is written as 

𝜂𝑖𝑗 =  
1

2
 (

𝜕𝑥𝑠

𝜕𝑎𝑖
 
𝜕𝑥𝑠

𝜕𝑎𝑗
− 𝛿𝑖𝑗) =  

1

2
 (𝛼𝑠𝑖𝛼𝑠𝑗 −  𝛿𝑖𝑗) .          (4) 



In the above Eq. 4,  
𝜕𝑥𝑠

𝜕𝑎𝑖
 

𝜕𝑥𝑠

𝜕𝑎𝑗
= 𝛼𝑠𝑖𝛼𝑠𝑗  is called the right Cauchy-Green tensor evaluated at stress-

free state. Then,  

                                𝜂𝑖𝑗= 
1

2
 (𝑢𝑖𝑗 +  𝑢𝑗𝑖 +  𝑢𝑘𝑖 𝑢𝑘𝑗) = 𝑢𝑖𝑗 + (

1

2
) 𝑢𝑘𝑖 𝑢𝑘𝑗  

                𝛼𝑖𝑗 =  𝛿𝑖𝑗 + 𝑢𝑖𝑗 =  𝛿𝑖𝑗 + 𝜂𝑖𝑗 −
1

2
 𝜂𝑖𝑘𝜂𝑘𝑗 +

1

2
𝜂𝑖𝑘𝜂𝑘𝑙𝜂𝑙𝑗 − ⋯         (5)  

𝛽𝑖𝑗 ≡
𝜕𝑎𝑖

𝜕𝑥𝑗
=

𝜕(𝑥𝑖−𝑢𝑖)

𝜕𝑥𝑗
= 𝛿𝑖𝑗 −

𝜕𝑢𝑖

𝜕𝑎𝑘

𝜕𝑎𝑘

𝜕𝑥𝑗
= 𝛿𝑖𝑗 − 𝑢𝑖𝑘𝛽𝑘𝑗 = 𝛿𝑖𝑗 − 𝜂𝑖𝑗 +

3

2
𝜂𝑖𝑘𝜂𝑘𝑗 −

5

2
𝜂𝑖𝑘𝜂𝑘𝑙𝜂𝑙𝑗 + ⋯ (6)  

 

Let H denote enthalpy and 𝜏𝑖𝑗 represent the thermodynamic stress. 

𝜂𝑖𝑗 =  −𝜌0 (
𝜕𝐻

𝜕𝜏𝑖𝑗
)

𝐱,𝑆

= 𝑆𝑖𝑗𝑘𝑙𝜏𝑘𝑙 +
1

2
𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝜏𝑘𝑙𝜏𝑚𝑛 +

1

6
𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝜏𝑘𝑙𝜏𝑚𝑛𝜏𝑝𝑞 + ⋯,        (7) 

where    𝜏𝑖𝑗 = 𝐽
𝜕𝑎𝑖

𝜕𝑥𝑘

𝜕𝑎𝑗

𝜕𝑥𝑙
𝑇𝑘𝑙 = 𝐽𝛽𝑖𝑘𝛽𝑗𝑙𝑇𝑘𝑙.            (8) 

From Eqs. 7 and 8, one obtains 

 𝜂𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝐽𝛽𝑘𝑟𝛽𝑙𝑠𝑇𝑟𝑠++
1

2
𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝐽2𝛽𝑘𝑟𝛽𝑙𝑠𝛽𝑚𝑡𝛽𝑛𝑢𝑇𝑟𝑠𝑇𝑡𝑢 

                + 
1

6
𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞𝐽3𝛽𝑘𝑙𝛽𝑙𝑠𝛽𝑚𝑡𝛽𝑛𝑢𝛽𝑝𝑣𝛽𝑞𝑤𝑇𝑟𝑠𝑇𝑡𝑢𝑇𝑣𝑤 + ⋯           

which is simplified to 

𝜂𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝑇𝑘𝑙 + [𝑆𝑖𝑗𝑘𝑙𝑆ℎℎ𝑚𝑛 − 2𝑆𝑖𝑗𝑘ℎ𝑆ℎ𝑙𝑚𝑛 +
1

2
𝑆𝑖𝑗𝑘𝑙𝑚𝑛] 𝑇𝑘𝑙𝑇𝑚𝑛 + ⋯        (9)  

Evaluation of the above Eq. 9 is quite lengthy and involved. One denotes the square bracket 

items as 

 [ijklmn] = 𝑆𝑖𝑗𝑘𝑙𝑆ℎℎ𝑚𝑛 − 2𝑆𝑖𝑗𝑘ℎ𝑆ℎ𝑙𝑚𝑛 +
1

2
𝑆𝑖𝑗𝑘𝑙𝑚𝑛 

Then,   𝜂𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝑇𝑘𝑙 + [𝑖𝑗𝑘𝑙𝑚𝑛]𝑇𝑘𝑙𝑇𝑚𝑛 +  [𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞]𝑇𝑘𝑙𝑇𝑚𝑛𝑇𝑝𝑞,        (10) 

where [ijklmnpq] denotes 

     [ijklmnpq] =[𝑆𝑖𝑗𝑘𝑙 (
3

2
𝑆𝑔𝑔𝑚𝑛𝑆ℎℎ𝑝𝑞 − 2𝑆𝑔𝑔𝑚ℎ𝑆ℎ𝑛𝑝𝑞 +

1

2
𝑆ℎℎ𝑚𝑛𝑝𝑞) − 𝑆𝑖𝑗𝑘𝑔(4𝑆𝑔𝑙𝑚𝑛𝑆ℎℎ𝑝𝑞] 

  −4𝑆𝑔𝑙𝑚ℎ𝑆ℎ𝑛𝑝𝑞  + 𝑆𝑔𝑙𝑚𝑛𝑝𝑞) + 𝑆𝑖𝑖𝑔ℎ𝑆𝑔𝑘𝑚𝑛𝑆ℎ𝑙𝑝𝑞 + 3𝑆𝑖𝑗𝑘ℎ𝑆ℎ𝑔𝑚𝑛𝑆𝑔𝑙𝑝𝑞   

  −𝑆𝑖𝑗𝑘𝑙𝑆𝑔ℎ𝑚𝑛𝑆𝑔ℎ𝑝𝑞 + 𝑆ℎℎ𝑝𝑞𝑆𝑖𝑗𝑘𝑙𝑚𝑛 − 𝑆ℎ𝑛𝑝𝑞𝑆𝑖𝑗𝑘𝑙𝑚ℎ − 𝑆ℎ𝑙𝑝𝑞𝑆𝑖𝑗𝑘ℎ𝑚𝑛 

  +
1

6
𝑆𝑖𝑗𝑘𝑙𝑚𝑛𝑝𝑞]𝑇𝑘𝑙𝑇𝑚𝑛𝑇𝑝𝑞 + ⋯ 

 



Under hydrostatic pressures P = −
1

3
𝑇𝑖𝑖 

P=−
1

3
𝐶𝑘𝑘𝑚𝑚𝜂𝑚𝑚 +

1

3
𝐶𝑘𝑘𝑚𝑚𝜂𝑚𝑚(𝜂ℎℎ − 2𝜂𝑘𝑘 + 2𝜂𝑘𝑘𝜂ℎℎ −

1

2
𝜂ℎℎ𝜂𝑔𝑔 − 𝜂𝑔ℎ𝜂𝑔ℎ) 

−
1

3
𝐶𝑘𝑘𝑚𝑛𝑝𝑝𝜂𝑚𝑚𝜂𝑝𝑝 (

1

2
+ 𝜂𝑘𝑘 −

1

2
𝜂ℎℎ) −

1

18
𝐶𝑘𝑘𝑚𝑚𝑝𝑝𝑟𝑟𝜂𝑚𝑚𝜂𝑝𝑝𝜂𝑟𝑟 + ⋯ 

 

For cubic and isotropic solids, (1 + 2𝜂𝑚𝑚)3 = (𝑉 𝑉0⁄ )2 =  (1 + 2𝜂)3 𝜂𝑚𝑚 =  𝜂; 𝑚 (𝑓𝑖𝑥𝑒𝑑) =

1, 2, 𝑜𝑟 3.   

 𝜂 = 𝜂𝑚𝑚 =
1

2
[(

𝑉

𝑉0
)

2

3
− 1] 

       P = −
1

3
𝐶𝑘𝑘𝑚𝑚𝜂 + (

1

3
𝐶𝑘𝑘𝑚𝑚 −

1

6
𝐶𝑘𝑘𝑚𝑚𝑝𝑝) 𝜂2  

                     + (
1

2
𝐶𝑘𝑘𝑚𝑚 −

1

6
𝐶𝑘𝑘𝑚𝑚𝑝𝑝 +

1

18
𝐶𝑘𝑘𝑚𝑚𝑝𝑝𝑟𝑟) 𝜂3 + ⋯        (11) 

 

               
1

6
𝐶𝑘𝑘𝑚𝑚 =

1

6
3(𝐶11 + 2𝐶12) =

3

2
B0          𝐶𝑘𝑘𝑚𝑚 = 9B0   (𝐵0: Bulk Modulus). 

 

     P =
3

2
B0 [1 − (

𝑉

𝑉0
)

2

3
] + (

3

4
B0 −

1

24
𝐶𝑘𝑘𝑚𝑚𝑝𝑝) [1 − (

𝑉

𝑉0
)

2

3
]

2

+ (
9

16
B0 −

1

48
𝐶𝑘𝑘𝑚𝑚𝑝𝑝 

           +
1

144
𝐶𝑘𝑘𝑚𝑚𝑝𝑝𝑟𝑟) [1 − (

𝑉

𝑉0
)

2

3
]

3

+ ⋯            (12) 

 

Note in Eq. 12 that Ckkmmpp  = 3(C111+6C112+2C123) = − 27B0B0
′             (see Ref. [8-10]) 

Ckkmmpprr = 3(C1111 + 8C1112 + 6C1122 + 12C1123)         (13) 

P = 
3

2
B0 [1 − (

𝑉

𝑉0
)

2

3
] + B0 (

3

4
+ 

9

8
 B0

′ ) [1 − ((
𝑉

𝑉0
)

2

3
)]

2

+ [
9

16
B0 +

9

16
B0B0

′  

          
1

48
 (C1111 + 8C1112 + 6C1122 + 12C1123)] [1 − ((

𝑉

𝑉0
)

2

3
)]

3

+ ⋯        (14) 

P = C1 𝜂 + C2 𝜂2 + C3 𝜂3 + C4 𝜂4 +⋯   = Ci 𝜂I ;         𝜂 = 1 − (
𝑉

𝑉0
)

2

3
  ;       

𝜕𝜂

𝜕𝑉
=  − 

1

𝑉0
(

𝑉

𝑉0
)

−1/3
 

 



      
𝑑

𝑑𝑝
(

𝑉

𝑉0
)

2

3
=  − 

2

3𝐵
 (

𝑉

𝑉0
)

2/3
      B: Bulk Modulus  

      
𝜕𝜂

𝜕𝑝
 = 

𝑑𝜂

𝑑𝑉

𝑑𝑉

𝑑𝑝
=  − 

2

3

1

𝑉0
(

𝑉

𝑉0
)

−
1

3 𝑑𝑉

𝑑𝑝
=  

2

3𝐵
(

𝑉

𝑉0
)

2

3
=  − 

𝑑

𝑑𝑝
 (

𝑉

𝑉0
)

2

3
 

  B = − 𝑉
𝑑𝑝

𝑑𝑉
= −𝑉

𝑑𝑝

𝑑𝜂

𝑑𝜂

𝑑𝑉
=  

2

3𝐵
 (

𝑉

𝑉0
)

2

3
(𝐶1 + 2𝐶2𝜂 + 3𝐶3𝜂2 + 4𝐶4𝜂3 + ⋯ ) 

    B0 =  
2

3
 𝐶1    𝐶1 =  

3

2
 B0          (15) 

𝑑B

𝑑𝑝
=  −

4

9
 

1

B
 (

𝑉

𝑉0
)

2

3 (𝐶1 + 2𝐶2𝜂 + 3𝐶3𝜂2 + 4𝐶4𝜂3 + ⋯ ) + 
2

3𝐵
 (

𝑉

𝑉0
)

2

3
(2𝐶1 + 6𝐶2𝜂 + 12𝐶4𝜂2 + ⋯ ) 

=  
4

9B
 (

𝑉

𝑉0
)

2

3
[(−(𝐶1 + 2𝐶2𝜂 + 3𝐶3𝜂2 + ⋯ ) + (

𝑉

𝑉0
)

2

3 (2𝐶2 + 6𝐶3𝜂 + 12𝐶4𝜂2 + ⋯ )] 

 

     B0
/

=  
4

9B0
 (− 𝐶1 + 2 𝐶2) ;          𝐶2 =  

1

2
(𝐶1 + 

9B0B0
/

4
) =  (

3

4
+ 

9

8
 B0

/
)        (16) 

𝑑2B

𝑑𝑝2 =  −
4

9
 [

1

B2 
𝑑B

𝑑𝑝
 (

𝑉

𝑉0
)

2

3
+ 

2

3𝐵
(

𝑉

𝑉0
)

2

3
][− (𝐶1 + 2𝐶2𝜂 + 3𝐶3𝜂2 + ⋯ ) + (

𝑉

𝑉0
)

2

3 (2𝐶2 + 6𝐶3𝜂 + ⋯ ) 

   +
4

9B
 (

𝑉

𝑉0
)

2

3
[−(2𝐶2 + 6𝐶3𝜂 + ⋯ )

2

3𝐵
 (

𝑉

𝑉0
)

2

3
−  

2

3𝐵
 (

𝑉

𝑉0
)

2

3
 (2𝐶2 + 6𝐶3𝜂 + ⋯ ) 

            +  (
𝑉

𝑉0
)

2

3
 (6𝐶2 + 24𝐶3𝜂 + ⋯ ) 

2

3𝐵
 (

𝑉

𝑉0
)

2

3
] 

     B0
// = 

4

9
 (

B0
/

B0
2 + 

2

3B2) (−𝐶1 + 2𝐶2) + 
4

9B0
 (−

8𝐶2

3B0
+

4𝐶3

B0
) =  −

4

9B0
2  [− (B0

/
+

2

3
) 𝐶1 

             + (2B0
/

+ 4)𝐶2 − 4𝐶3] 

 𝐶3 =  
1

4
 [

9 

4
 B0

2B0
// − (B0

/
+

2

3
 ) 𝐶1 + (2B0

/
+ 4)𝐶2] = 

1

4
 (

9

4
B0

2B0
// +2 B0 +

9

2
B0B0

/
+ 

9

4
 B0B0

2) 

       =  
1

2
 B0 + 

9

8
 B0B0

′ + 
9

16
 B0B0

′ 2
+

9

16
 B0 B0

// =  B0(
1

2
 + 

9

8
 B0

′ + 
9

16
 B0

′ 2
+ 

9

16
 B0

//) 

       =  B0[
9

16
+

9

16
B0

′ + 
1

48B0
 (𝐶1111 + 8𝐶1112 + 6𝐶1122 + 12𝐶1123)] 

     ∴ B0
// = 

4

9B0
2  [(B0

′ +
2

3
) 𝐶1 − (2B0

′ + 4)𝐶2 + 4𝐶3] 

               = 
1

9B0
 [1 − 9B0

′ − 9B0
′ 2

+
1

3B0
(𝐶1111 + 8𝐶1112 + 6𝐶1122 + 12𝐶1123)] 



              = 
1

B0
 [ 

1

9
 − B0

′ −  B0
′ 2

+ 
1

27B0
(𝐶1111 + 8𝐶1112 + 6𝐶1122 + 12𝐶1123)] .      (17) 

 

The above Eq. 17 calculates the second pressure derivative of the bulk modulus measured at zero 

pressure from the knowledge of the initial bulk modulus B0 and the first pressure derivative B0
′ . 

The expressions in the parenthesis in Eq. 17 can be converted into the forms of using Sijkm by 

using the relations 

    𝐶𝛼𝜈𝜆 =  − 𝐶𝛼𝛽𝐶𝛾𝜈𝐶𝜇𝜆𝑆𝛽𝛾𝜇           (18) 

Analogously   𝑆𝜈𝛾𝜇 =  − 𝑆𝜈𝛼𝑆𝛽𝛾𝑆𝜆𝜇𝐶𝛼𝛽𝜆  .           (19) 

 

This author used the theoretical data for the fourth order Cijkl for Aluminum and Silicon crystals 

in quite- recently published article by A. Pandit and A. Bongiorno in [11], who cited as C1111 = 

10102 GPa, C1112 = 2210 GPa, C1122 = 2441 GPa, C1123 =  − 609 GPa for aluminum crystal and 

C1111 = 2586 GPa, C1112 = 2112 GPa, C1122 = 1885 GPa, C1123 =  576 GPa for silicon crystal. For 

B0 and B0
/
 data, this author cites his article in aplgllc.org/publications [12] with the title 

“Coefficients of Equation of State Expressed in Higher-Order Elastic Constants” as B0 = 75.7 

GPa and B0
/
 = 4.16 for aluminum crystal and B0 = 98.0 GPa and B0

/
 = 4.24 for silicon crystal. 

Then, Eq. 17 finally yields 

   B0
// = − 0.0551 for aluminum crystal                   (20a) 

   B0
// = − 0.2256 for silicon crystal                   (20b) 

 

Both Eqs. (20a) and (20b) is a crude theoretical estimate for B0
//. A possibility is open in the 

future that FOEC could be determined experimentally with reasonable accuracy. Then, B0
// would 

be determined with better accuracy. 

     In the near future, a paper dealing with the Young’s modulus and Poisson’s ratio will be 

formulated under uniaxial loading applied to a material of orthotropic or higher symmetry. 
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