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Abstract 

     This paper expresses the coefficients of equation of state of solids in terms of the combination 

of third-order elastic constants, which approximate the pressure derivative of bulk modulus well 

in first-order Murnaghan equation (ME1) and second-order Birch equation (BE2). 
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I. Introduction 

     Isothermal equations of state of solids, such as first-order and second-order Murnaghan’s 

equations and first-order and second-order Birch’s equations are described in detail by 

Macdonald [1], Knopoff [2], and Murnaghan [3]. 

     Let V denote the volume of a specimen and P the pressure applied to it, at some constant 

temperature T. Then, an isothermal bulk modulus B is defined as 𝐵0 ≡  −𝑉(𝜕𝑃 𝜕𝑉)⁄
𝑇
 which at a 

given reference pressure P0  shall be 𝐵0 =  − 𝑉0 (
𝜕𝑃

𝜕𝑉
)

𝑃=𝑃0

. The first- and second- pressure 

derivative of the bulk modulus evaluated at P = P0  shall be denoted by  B0
/ and B0

//, respectively. 

𝑃0 is assumed to be one bar in this paper. For convenience, the following notations are 

introduced.  

 𝜂 ≡ B0
/ ;                     (1) 

   

𝜑 ≡ B0 B0
//;              (2) 



          p = P – P0 ;    𝑧 ≡  𝑝 𝐵0⁄ ;    χ ≡ 𝑉0 𝑉⁄ ,                 (3) 

         

all of which can be obtained from measurements of pressure and volume, combined with high 

precision ultrasonic wave-speeds. 

     This author also introduces three deformation states characterized by indices a, X, and I, 

where index a represents an undeformed stress-free state, index X characterizes a static finite 

deformation state from the undeformed stated a, and index I represents a small deformation state 

superposed on the finite deformation state X by a travelling ultrasonic wave. 

     Most commonly used equations of state of solids are: (i) first-order Murnaghan (ME1);  

(ii) second-order Murnaghan (ME2); (iii) first-order Birch (BE1); (iv) second-order Birch (BE2). 

The forms of ME1, ME2, BE1, and BE2 are described in Refs. 4-6, which indicate that all these 

equations of state can be specified with the knowledge of 𝜂 and 𝜓, with measurements of 

pressure p and volume χ ≡ 𝑉0 𝑉⁄ .    

BE1 and BE2 are favored by geologists in describing the interior of the planet earth. Barsh and 

Chang [7] on the basis of their ultrasonic data of cesium halides conclude that the three-

parameter equation of Birch is superior to Keane’s equation. This paper will show in the next 

section of Theoretical Developments that 𝑉/𝑉0  ≡ 𝑉𝑋/𝑉0 can be expressed in terms of the initial 

bulk modulus 𝐵0 and combination of third-order elastic constants. With the knowledge of the 

third-order elastic constants found in literatures [8], V/V0 will be calculated and compared with 

the experimentally obtained  𝜂 ≡ B0
/, 𝜑 ≡ B0 B0

//, quantities defined by Eq. 1 and Eq. 2, 

respectively. 

 

II. Theoretical Developments 

 
     When the direction of the applied load coincides with that of the principal strain or stress in 

the solids with orthorhombic or higher symmetry, it is convenient to introduce the principal 

stretches defined by 

 

   
𝜕𝑥𝑖

𝜕𝑎𝑖
=  𝜆𝑖𝛿𝑖𝑗 (i fixed, i = 1, 2, or 3).                       (4) 

 

Note that 𝜆1 =  𝜆2 and 𝜌𝑋𝜌𝑎
−1 =  (𝜆1

2 𝜆3)−1 apply to isotropic solids and also apply to cubic, 

hexagonal, and transversely isotropic solids when the applied loading direction coincides with 

one of cubic axes and the symmetry axis of hexagonal and transversely isotropic solids, 

respectively.  

 

     The volume/density of a solid is given by [9-11] 

 

     𝜆1𝜆2𝜆3 =  
𝑉𝑋

𝑉0
=  

𝜌0

𝜌𝑋
= 1 + 𝑆𝑖𝑖𝑘𝑘𝑇𝑘𝑘 + 

1

2
 (𝑆𝑖𝑖𝑘𝑘𝑇𝑘𝑘)2 

     +[2(𝑆1𝑘𝑆2𝑚 + 𝑆2𝑘𝑆𝑚3 + 𝑆𝑘3𝑆1𝑚) − 2𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 + 
1

2 
𝑆𝑖𝑖𝑘𝑘𝑚𝑚] 𝑇𝑘𝑘𝑇𝑚𝑚+⋯  



     = 1 + 𝑆11𝑇11+𝑆22𝑇22 + 𝑆33𝑇33 + 𝑆12(𝑇11 + 𝑇22) + 𝑆23(𝑇22 + 𝑇33) + 𝑆13(𝑇11 + 𝑇33) 

     +
1

2
(𝑆11𝑇11 + 𝑆22𝑇22 + 𝑆33𝑇33 + 𝑆12(𝑇11 + 𝑇22) + 𝑆23(𝑇22 + 𝑇33) + 𝑆13(𝑇11 + 𝑇33))

2
 

     +[2((𝑆1𝑘𝑆2𝑚 + 𝑆2𝑘𝑆𝑚3 + 𝑆𝑘3𝑆1𝑚) − 2𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 +  
1

2
𝑆𝑖𝑖𝑘𝑘𝑚𝑚] 𝑇𝑘𝑘𝑇𝑚𝑚 + ⋯  ,        (5) 

 

where Tij represents the Cauchy stress. 

 

     Under hydrostatic pressures Tkk = Tmm = −𝑃,  

 

     
𝑉𝑋

𝑉0
= 1 − 𝑆𝑖𝑖𝑘𝑘𝑃 + [ (1 2)𝑆𝑖𝑖𝑘𝑘

2 − 2𝑆𝑖𝑖𝑘𝑘⁄ 𝑆𝑘𝑘𝑚𝑚+2 (𝑆11𝑘𝑘𝑆22𝑚𝑚 + 𝑆22𝑘𝑘𝑆𝑚𝑚33 +

                𝑆𝑘𝑘33𝑆11𝑚𝑚) + ({
1

2
) 𝑆𝑖𝑖𝑘𝑘𝑚𝑚] 𝑃2 + ⋯ 

           = 𝑆𝑖𝑖𝑘𝑘 − [𝑆𝑖𝑖𝑘𝑘
2 − 4𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 + 4(𝑆11𝑘𝑘𝑆22𝑚𝑚 + 𝑆22𝑘𝑘𝑆𝑚𝑚33 + 𝑆𝑘𝑘33𝑆11𝑚𝑚) 

             +𝑆𝑖𝑖𝑘𝑘𝑚𝑚]𝑃 + ⋯                 (6) 

 

     B = 1 − 𝑆𝑖𝑖𝑘𝑘𝑃 + [(
1

2
) 𝑆𝑖𝑖𝑘𝑘

2 − ⋯ ]𝑃2 

         = 𝑆𝑖𝑖𝑘𝑘{1 − [𝑆𝑖𝑖𝑘𝑘 − 𝑆𝑖𝑖𝑘𝑘
−1 [4𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 − 4(𝑆𝑖𝑖𝑘𝑘𝑆22𝑚𝑚 + 𝑆22𝑘𝑘𝑆𝑚𝑚33 + 𝑆𝑘𝑘33𝑆11𝑚𝑚) 

         −𝑆𝑖𝑖𝑘𝑘𝑚𝑚]𝑃 + ⋯ 
         = B0 −𝐵0

2[4𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 − 4(𝑆𝑖𝑖𝑘𝑘𝑆22𝑚𝑚 + 𝑆22𝑘𝑘𝑆𝑚𝑚33 + 𝑆𝑘𝑘33𝑆11𝑚𝑚) − 𝑆𝑖𝑖𝑘𝑘𝑚𝑚]𝑃 + ⋯         
                    (7) 

 
     𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 =  (𝑆11 + 𝑆12 + 𝑆13)2 + (𝑆12 + 𝑆22 + 𝑆23)2 + (𝑆13 + 𝑆23 + 𝑆33)2 

     𝑆𝑖𝑖𝑘𝑘𝑆22𝑚𝑚 + 𝑆22𝑘𝑘𝑆𝑚𝑚33 + 𝑆𝑘𝑘33𝑆11𝑚𝑚 = (𝑆11 + 𝑆12 + 𝑆13)(𝑆12 + 𝑆22 + 𝑆23) 

          +(𝑆12 + 𝑆22 + 𝑆23)(𝑆13 + 𝑆23 + 𝑆33) + (𝑆13 + 𝑆23 + 𝑆33)(𝑆11 + 𝑆12 + 𝑆13) 

       𝑆𝑖𝑖𝑘𝑘𝑚𝑚 = 𝑆111 + 3𝑆112 + 3𝑆113 + 3𝑆122 + 6𝑆123 + 3𝑆133 + 𝑆222 + 3𝑆223 + 3𝑆233 + 𝑆333 . 

 

For cubic and isotropic solids 

     𝑆𝑖𝑖𝑘𝑘𝑆𝑘𝑘𝑚𝑚 = 3𝑆11𝑖𝑖𝑆11𝑚𝑚 = 3𝑆11𝑖𝑖
2 = 3(𝑆11 + 2𝑆12)2 = (

1

3
) 𝜒0

2 = (1/(3𝐵0
2) , 

     where 𝜒0 = 3(𝑆11 + 2𝑆12) =  𝐵0
−1 is the initial compressibility. 

 

 

     𝑆𝑖𝑖𝑘𝑘𝑆22𝑚𝑚 + 𝑆22𝑘𝑘𝑆𝑚𝑚33 + 𝑆𝑘𝑘33𝑆11𝑚𝑚 = 3𝑆11𝑘𝑘
2 =  3(𝑆11 + 2𝑆12)2 = 1/(3𝐵0

2) , 

 

     𝑆𝑖𝑖𝑘𝑘𝑚𝑚 = 3𝑆111 + 18𝑆112 + 6𝑆123 = 3(𝑆111 + 6𝑆112 + 2𝑆123)               (8) 

 

Therefore, 

 

                    𝐵 =  𝐵0 + 3 𝐵0
2(𝑆111 + 6𝑆112 + 2𝑆123)𝑃 + ⋯                 (9) 

 

Eq. (6) indicates that 𝐵0 ,
′  the first pressure derivative of the bulk modulus at reference pressure 

P0, is given by 

   𝐵0  
′ ≡ 𝜂 =  3 𝐵0

2(𝑆111 + 6𝑆112 + 2𝑆123),              (10)  

 

which is expressed using the third-order elastic stiffness coefficients as 



 

             = −3(𝑆11 + 2𝑆12)3(𝐶111 + 6𝐶112 + 2𝐶123) =  −(
1

9
)𝜒0

3(𝐶111 + 6𝐶112 + 2𝐶123) 

             = −(9𝐵0
3)−1(𝐶111 + 6𝐶112 + 2𝐶123) . 

 

        
𝑉

𝑉0
= 1 − 𝜒0𝑃 + [

1

2
𝜒0  

2 − (𝜒0
3/18) ( 𝐶111 + 6𝐶112 + 2𝐶123)] 𝑃2 +           (11) 

                             
    𝐵 =  − 𝐵0 

2 (9𝐵0
3)−1( 𝐶111 + 6𝐶112 + 2𝐶123)𝑃+⋯ 

                           = 𝐵0 − (9𝐵0)−1( 𝐶111 + 6𝐶112 + 2𝐶123)𝑃 + ⋯                        (12) 
 
Eq. (12) indicates that 𝐵0 ,

′  the first pressure derivative of the bulk modulus at reference pressure 

P0, is given by 

 

  𝐵0  
′ ≡ 𝜂 = −(9𝐵0)−1( 𝐶111 + 6𝐶112 + 2𝐶123)          (13) 

 

With the knowledge of 𝐵0 and three third-order elastic constants (TOEC) 𝐶111, 𝐶112, and 𝐶123, 

one can estimate 𝐵0  
′ ≡ 𝜂, which is an important parameter for describing ME1, BE1 and BE2.  

Values of these third-order elastic constants reported a few decades ago have substantial errors of 

a few tens of percents.  

 

 

III. Results and Discussion 
      

     In (i) the case of NaCl solids, this author quotes the value of Table 9 of Ref. 8. When the 

value of 𝐵0  
′ ≡ 𝜂 (see Eq. 1) is calculated using Eq. 13, the values of TOEC of NaCl solids in 

units of GPa are: C111 = −864, C112= −50, and C123= = 9. Using B0 ≅ 24 𝐺𝑃𝑎, Eq. 13 results in 

𝐵0  
′ ≡ 𝜂 = 5,21, which compares well with 𝐵0  

′ ≡ 𝜂 = 5,35 reported in Ref. 12, considering that 

the reported third-order constants have appreciable errors. 

 

     In (ii) the case of pure silicon crystal, the author again takes the values of TOEC reported in 

Table 10 of Ref. 8. When the value of 𝐵0  
′ ≡ 𝜂 (see Eq. 1) is calculated using Eq. 13,  the values 

of TOEC of NaCl solids in units of GPa are: C111 = −795, C112= −445, and C123= −75. Using B0 

≅ 95 𝐺𝑃𝑎, Eq. 13 results in 𝐵0  
′ ≡ 𝜂 = 4.23, which compares very well with 𝐵0  

′ ≡ 𝜂 = 4.24 

reported in Ref. 13, considering that the reported third-order constants have appreciable errors. 

 

     In (iii) the case of Al solids, the author again takes the values of TOEC reported in Table 11 of 

Ref. 8 with Main refs. 68T1. When the value of 𝐵0  
′ ≡ 𝜂 (see Eq. 1) is calculated using Eq. 13,  

the values of TOEC of Al solids in units of GPa are: C111 = −1080, C112= −315, and C123 =
+36. Using B0 ≅ 69 𝐺𝑃𝑎, Eq. 13 results in 𝐵0  

′ ≡ 𝜂 = 3.76, which compares approximately with 

𝐵0  
′ ≡ 𝜂 = 4.16 reported in Ref. 14 by Mao et al., considering that the reported third-order 

constants have appreciable errors. 

 

     In (iv) the case of LiF single crystal, the author again takes the values of TOEC reported in 

Table 9 of Ref. 8 with Main refs. 67H2. When the value of 𝐵0  
′ ≡ 𝜂 (see Eq. 1) is calculated 

using Eq. 13,  the values of TOEC of LiF crystal in units of GPa  at 298 K temperature are: C111 

= −1920, C112= −330, and C123= = −40.  Using B0 ≅ 66.4 𝐺𝑃𝑎, Eq. 10 results in 𝐵0  
′ ≡ 𝜂 = 



6.66, which compares approximately with 𝐵0  
′ ≡ 𝜂 = 6.37 in Table VI reported by Kim et al. in 

Ref. 4. As Barsh and Chang [7] pointed out, the three-parameter equation of Birch (BE2) fits 

experimental data quite well and is superior to Keane’s equation. 

 

     Note that for the previous three cases the values of 𝐵0  
′ are obtained using the first-order 

Murnaghan equation (ME1). 
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