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Abstract 

An integral expression is established for the surface displacement response tensor of a semi-infinite anisotropic elastic continuum 
to sudden loading at a point on the surface. The expression is numerically evaluated for normal force and displacement in a 
number of directions in the Cu (001) surface, and the results compared with waveforms measured in a copper single crystal. The 
predicted singularities associated with bulk and surface wave arrivals are clearly observed. Because of folding of the Rayleigh 
wave group velocity curve, there are multiple surface wave arrivals in some directions. Near the [ 1 IO] direction the response is 
dominated by a pseudo surface wave resonance. 0 1998 Elsevier Science B.V. 
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1. Introduction 

The elastodynamic response functions of solids find 
application in many areas of science, including materials 
characterization, non-destructive testing and seismology. 
Over the years considerable effort has been devoted to 

calculating these functions for solids of various types 

(isotropic, anisotropic, viscoelastic) and geometries 
(infinite continuum, halfspace, plate geometry). The 
methods for treating isotropic solids are well established, 

and are described in a number of books on the dynamics 
of solids [l-3]. The growing technological importance 
of anisotropic materials and the recognition of the 

important role of anisotropy in seismology have focused 
attention on the elasodynamics of anisotropic solids. 
The response of an anisotropic half-space to an impul- 
sive line load has been obtained by Burridge [4] using 
the Cagniard method, and Maznev and Every [5] have 
derived a similar result by Fourier transformation. Willis 

[6] in a seminal paper has obtained the formal solution 
to a wide class of self-similar problems for the aniso- 
tropic half-space using Fourier and radon transforms, 
and this method has been further developed by Wang 
and Achenbach [7]. Recently Mourad at al. [8] have 
used the Cagniard de Hoop method to calculate the 
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interior response of anisotropic halfspaces of hexagonal 
and cubic symmetry to point loading, and Tewary and 
Fortunko [9] have treated the same problem by integral 
representation in terms of a 6 function. 

In this paper we calculate the surface displacement 
response of a semi-infinite anisotropic elastic continuum 
to sudden loading at a point on the surface. Our 
approach is to Fourier transform the equations of 
motion and boundary conditions with respect to time 
and the spatial coordinates parallel to the surface, solve 
the resulting algebraic equations, and then carry out the 
inverse transform. Analytical means are then used to 
reduce the surface response to a one-dimensional integral 
for numerical evaluation. The method is readily imple- 
mented computationally, and we present calculated 
responses for the Cu(OO1) surface that are in good 
agreement with waveforms we have measured in a (001) 
oriented copper single crystal using capillary fracture 
generation and capacitive detection. 

2. Method of calculation 

As full details of our method of calculation are 
published elsewhere [lo], only a brief outline is given 
here. We consider a general anisotropic elastic contin- 
uum of density p and elastic modulus tensor Cijkr 
occupying the half-space xj > 0. A concentrated point 
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force F(t) = (F,@(t)) with Heaviside step-function time 

dependence o(t) acts at the origin on the otherwise free 

surface of the half-space. The displacement field in 
response to this force, u,(x,t) = Gij(x,t)Fj, where 

G,,(x,t) is the response function tensor, satisfies the 

equations of motion 

d2Ui ah, 
P - = Cijk, 

at2 
-3 x3 >o, 
axj ax, 

(1) 

subject to the boundary conditions on the stress tensor: 

013(xl17x3=o+ ?t)=Fj6j[d(XII)E(t), (2) 

where x,, =(x1,x2) denotes the position vector in the 

surface and 6(x,,) =6(x,)6(x,) is the two-dimensional 6- 

function. 

We seek a solution to the above equations of motion 
and boundary conditions in the form of a superposition 

of outgoing plane waves whose amplitudes are propor- 

tional to Fj: 

Ui(X,t) = 

x exp {i(k,, .x,, +k$@x, - wt)} +const. (3) 

For each value of the angular frequency o and wavevec- 

tor k,, =os,,, where s= k/w, is the acoustic slowness 

vector, the third component k, =os3 and the polariza- 

tion vector U are related by the Christoffel equations 

CCijklSjSk -PsiiJul =O, (4) 

and s$“’ are roots of the secular equation 

det ( CijklSjSk - P6i, ) = 0. (5) 

Eq. (5) yields six solutions of which only the three 

corresponding to outgoing waves, i.e. homogeneous 
(bulk) waves with ray vectors directed into the interior, 

or inhomogeneous (evanescent) waves which decay into 
the interior, are retained. The stress-strain relationship, 

0 Im = C,,,,au,/ax, together with Eqs. (2) and (3) yield 

a set of linear equations that determine the partial wave 

amplitudes Ay’ and thereby u(x,l). We obtain the surface 
response by taking the observation point x to be along 

the x,-axis, with x2 =x3 = 0. The integration with respect 
to o in Eq. (3) can be performed analytically, yielding 

+ ” Re @ij(t/xi) 
lx1 I 

(6) 

where 

s 

m 

@ijtsl)= ds2 yij(sli ), (7) 
-00 

3 adj (B)?’ Qn) 
yij(s,,) = C 

II=1 det IB( ’ 
(8) 

and 

Bj”’ = 1 c,,,, L$‘Sh”’ (9) 
P4 

is the boundary condition matrix. 

Using the fact that for negative times Gij(x,, t) is 
constant, we arrive at a Kramers-Kronig-type relation 
for @: 

+CC 

_;g s ds, 
Im@ij(sl) 

= ” ReQij(t/x,)+const., 
--ou six* -t Ix1 I 

which disposes of the integration with respect to si. It 
follows that 

1 
Gij(x,,t>O)= - ~ Re(~ij(t/xl)-_ij(O)}. 

2x2 Ix* I 
(11) 

For an isotropic solid this integral can be performed 
analytically, but for an anisotropic solid numerical meth- 
ods are in general required for its evaluation. In all 
except possibly a few isolated directions of s,,, there is a 
single Rayleigh surface wave (RW), conditioned on the 

vanishing of the boundary condition determinant 

det P(sl, )I. 

2.1. Numerical integration 

For an anisotropic solid the integration over s2 in 
Eq. (7) to obtain Qij has in general to be done numeri- 
cally. Fig. 1 shows the dependence of Re(Y3j,) on s, 
and s2 for the Cu (00 1) surface as a grey-scale ‘image’, 
with degree of darkness corresponding to the magnitude 
of Re( Y3,). To render the RW singularity visible, it has 
been artificially broadened by making the replacement 

ul,,+M1/Y33 +a), (12) 

where a is a small but finite positive number. The 
continuously shaded area comprises the Re(Y33) 
weighted projections s,, of the slowness vectors of all 
bulk modes in the first quadrant, its outer boundary 
being the so-called transonic state. The lines which stand 
out as lighter and which partition this domain, lie on 
the locus of limiting slownesses for the individual 
branches. This locus and the transonic state are the 
projection on the (si, s,)-plane of points on the three 
sheets of the slowness surface where the surface normal, 
which is the ray directon, is parallel to the 
(si, s,)-plane. Along the [ 1 lo] direction the ST bulk 
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Fig. I. Grey-scale representation of Re($,,(s,, .sz)) for the Cu(OO1) 

surface. 

modes are SH polarized normal to the (ilO) symmetry 
plane, and thus do not contribute to Re(Y&, which 
pertains to normal force and displacement. This is 
evident from the fading of the ST modes in this region 
of the plot. The sharp RW resonance is most intense in 
the [ 1001 direction, and fades away towards the [ 1 lo] 

direction, where it degenerates with the transonic state. 
In the region extending about 20” to either side of the 

[ 1 lo] direction there is a pseudo-surface acoustic wave 
(PSAW) resonance lying within the band of ST bulk 
modes. Exactly in the [ 1 lo] direction the PSAW becomes 
a pure supersonic two-component SAW. 

The method we have used in calculating Gfj(xl, t), is 

to make the replacement (12) and then evaluate the 
integral (7) numerically for 250 values of t. Over most 
of the range of s2, !Yij is slowly varying, but in isolated 
regions there are the sharp RW or PSAW resonances, 
and kinks at limiting branch slownesses to contend with. 

We have dealt with this problem by dividing the range 
of s2 into a number of intervals and applying Rhomberg 
integration to each interval. It is only the few intervals 

where Yii is rapidly varying that more than one 
Rhomberg iteration is required to achieve convergence. 

2.2. Wirvc urrivul singularitit~s 

Fig. 2 shows the surface response function 
G,,(lx, ( = 20 mm, t) calculated for the [ 1001 direction in 
the Cu (001) surface (the solid line). The response is 
zero until the first bulk wave arrival at t, =4.62 ps, at 
which instant there is a sudden downward kink corre- 

(001) Cu Surface; Distance = 20 mm 
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Fig. 2. Surface responses u,=G,,(~.u,~=20 mm. r) for the [ IOO] and 

[ 1 IO] directions in Cu (001). The insert shows portion of the RW 

group velocity curve near the [ 1001 direction. 

sponding to a discontinuous change in velocity. This 
event is the longitudinal wave arrival, and is associated 
with the sharp dip in Re( Y33) at the limiting longitudinal 
slowness labelled ‘a’ in Fig. 1. The kinks in G,, at 
I,, =6.88 ~LS and t, = 8.04 ps are bulk transverse wave 
arrivals, and correspond to the limiting transverse slow- 
nesses labelled ‘b’ and ‘c‘ in Fig. 1. These singularities 

propagate outwards from the point of excitation at the 
bulk wave group velocities in any direction. Bulk wave 
arrival singularities and the analytic form they take in 
the response functions of infinite anisotropic continua 

have been surveyed in Ref. [ 111. 
At the surface there are also RW arrival singularities. 

These are generally much more prominent than the bulk 
wave arrivals. RW arrivals are conditioned by tangency 
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Fig. 3. Surface responses uj = G,,(Ix,/ = 20 mm. I) for three directions 

intermediate between [ 1001 and [I IO] in the Cu(OOl 1 surface. 
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of the line s1 =sR =t,/lx,I with the RW slowness curve. 
At the point of tangency the RW group velocity, which 
is normal to the RW slowness curve, is of magnitude 

l/&, and this is the velocity with which the wave arrival 
singularity propagates along the surface. The analytical 
form of Gij for t near t, depends on the particular ij 

component, whether the surface of the half-space is a 
materials symmetry plane or not, and whether the RW 
slowness curve is convex or concave at the point of 

tangency [lo]. For a general direction, Gij diverges as 
l/]tR - tJ on either one or both sides of the wave arrival 
time t,, and under certain conditions is constant after 

the last arrival. The sharp dips in Fig. 2 at t, = 
8.86 us, and t,=9.90 ps are RW arrival singularities. 

Beyond tf, G,, is constant, since Re( ul,,) is zero outside 
the RW slowness curve. There is a third RW arrival 
singularity at td, but it is a small feature because point 

‘d’ is close to where the RW degenerates with the 

transonic state and becomes SH in character. 
The inset in Fig. 2 depicts the RW group velocity 

curve for Cu(OO1) near the x,-axis, with the three rays 

corresponding to t,, tf and td being indicated. Ray ‘e’ 
lies at the intersection of two velocity curves, and with 
small deviations from [ 1001 there is a splitting in the 
arrival t,. This is evident in the response function for 
the direction at 3” to [ 1001 in Fig. 3. The ray ‘f’, by 

contrast, is a singlet, and does not undergo splitting. 
Also shown in Fig. 2 is the response function 

G33(Ix1 =20 mm, t) for the [ 1 lo] direction (the chain 
dotted line). The sharp dip at 8.6 us is associated with 
a two-component supersonic SAW. The third phase- 
matched partial wave, which is a SH polarized bulk 
wave, is decoupled from the first two. For small devia- 
tions from the [ 1 lo] symmetry direction the bulk partial 
wave component acquires a finite amplitude, and the 
mode becomes a PSAW. Responses in directions inter- 
mediate between [ 1001 and [ 1 IO] are shown in Fig. 3. 

2.3. Comparison with experiment 

We compare here the computed responses Gj3 
described above with surface waveforms measured in a 
(001) oriented copper single crystal (see Fig. 4). These 
waveforms have been generated by the capillary fracture 
technique, which is able to simulate a suddenly applied 
force normal to the surface [ 121. The normal displace- 
ment at a point elsewhere on the surface, in response to 
this force, is measured using a small aperture capacitive 
detector. We compare the voltage signal from the capaci- 
tive detector, which is proportional to the normal dis- 
placement of the sensed surface, with G,,. The data 
pertains to early times prior to the arrival of reflected 
waves from the sidewalls and opposite surface of the 
sample. As can be seen from a comparison of Figs. 2 
and 3 with Fig. 4, the computed half-space response 
functions are in good agreement with the measured 
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Fig. 4. Measured responses in the Cut001 ) surface for the same direc- 

tions as in Figs. 2 and 3. The separation between the source and detec- 

tion points is 20 mm. 

waveforms, particularly with regard to the bulk and 
surface wave arrival singularities. Naturally, because of 
the finite rise time of the force, which is of the order of 
100 ns, the finite bandwidth of the signal processing 
circuitry, and the small but finite sizes of the forcing and 
sensing areas, there is some rounding of the measured 

data as compared with the computed response functions. 
For the [ 1001 direction there is a deep minimum close 

to the predicted RW arrival time tf, and another at a 
time slightly later than the predicted RW arrival t,. The 
latter slight discrepancy can be attributed to the sensitiv- 
ity of the arrival e to slight misalignment of the observa- 
tion direction. There are distinct features in the 

waveform that conform closely to the bulk wave arrivals 
at t,, t, and t,. The splitting in the wave arrival e with 
change in the observation direction is clearly evident in 
the waveform for 3’ from [ 1001. By 15” from [ 1001 the 

first RW arrival is at 7.3 us, which preceeds the last 
bulk wave arrival. There are two closely spaced RW 
arrivals near 9.7 us, which are unresolved in the mea- 
sured waveform, appearing as a single deep minimum. 
In the [ 1 lo] waveform, the supersonic SAW (PSAW ) 
and L arrival are the most prominent features, and 
conform closely to calculation. 
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