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This paper presents analytic formulas for the group velocity of quasilongitudinal, quasitransverse,
and shear-horizontally (SH) polarized pure-transverse modes propagating in an arbitrary direction
on the symmetry planes of a stressed anisotropic elastic medium with orthotropic or higher
symmetry. The group velocity equations are expressed in terms of the thermodynamic elastic
stiffness coefficients and stresses acting on the medium. An example is provided with a~001! silicon
crystal compressed at uniaxial stress. ©1997 Acoustical Society of America.
@S0001-4966~97!00511-0#
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INTRODUCTION

The group velocities of various modes of an elastic wave
propagating in an elastic anisotropic medium in the stress-
free natural state have been extensively treated by many
authors.1–3 Explicit analytic formulas for phase velocities in
the symmetry direction and in an arbitrary direction of sym-
metry planes are also given in the literature.1,2,4 Because of
the complexity of the group velocity surfaces in an aniso-
tropic medium, no explicit analytic formula for the group
velocity in a general direction exists. However, in the sym-
metry directions, the phase and group velocities coincide and
this leads to valuable relations between the group velocity
and elastic constants of the medium. Recently, the first au-
thor extended the group velocity expressions to an arbitrary
direction on the symmetry planes5 and Kimet al.6–9 gave the
detailed treatment on the methods of determining all the elas-
tic constants of an anisotropic medium from group velocity
data measured in symmetry directions and planes. Based on
the two-dimensional Stroh formalism for the elastodynamic
problems, Wang10 gave an elegant treatment for the cusps of
the group velocity surfaces.

Equations of phase velocities at finite deformation of an
elastic medium under arbitrary stresses were formulated by
Toupin and Bernstein11 and Thurston.12,13 In the symmetry
directions of a stressed medium that maintains orthotropic or
higher symmetry, the group and phase velocities coincide
with each other, as in the case of an stress-free medium. This
gives relations between the group velocities of the pure mode
to the diagonal elements of the elastic constant matrix. How-
ever, to the authors’ knowledge, there appears no explicit
analytic formulation for the group velocity in an arbitrary
direction of symmetry planes. In this paper we derive the
group velocity expressions for the shear-horizontally (SH)
polarized pure-transverse (PT) modes, quasilongitudinal

(QL) and quasitransverse (QT) modes propagating on the
symmetry planes of the stressed medium. Our approach is
basically an extension of the methods used in Ref. 5 to the
stressed medium, replacing Christoffel’s tensor by the
equivalent acoustical tensor in the stressed state, where the
group velocity direction is again found to be normal to the
equivalent slowness surface in the stressed state.

The elastic waves emanating from their sources propa-
gate at the speed of group velocities which depend on the
direction of propagation in an anisotropic medium. Since the
group velocity, just like the phase velocity, also depends on
the stress on the medium, the measurement of group velocity
may yield information about the stresses acting on the me-
dium. This effect, known as acoustoelasticity,14 is generally
small in the moderate stress range below 1 GPa, and still
detectable if one measures the wave speed very accurately.
However, the change in group or phase velocity will be sig-
nificant in very high stresses, which can be found in the
interior of planets such as the Earth and Jupiter and inside
the diamond-anvil high-pressure cell in the laboratory,15

where the stresses acting on a material may be much higher
than its Young’s modulus in the natural state. A study of
group velocity will contribute to the understanding of the
acoustoelastic effect and the behavior of a material under
high pressures.

I. PHASE AND GROUP VELOCITIES, AND SLOWNESS
OF A STRESSED MEDIUM: GENERAL
FORMULATION

Suppose that a small amplitude wave motionu is super-
posed on the finite deformation caused by static stresses
s i j (X) acting on the medium. We denote the coordinate of a
particle of a stressed elastic body at finite deformation state
by X, which we adopt as a reference coordinate for deforma-
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tion. The equation of motion for the deformationu of a ho-
mogeneous medium is written in the absence of body force
as11,12

rXüi5@d iks j l ~X!1Ci jkl ~X!#
]2uk

]Xj ]Xl
5Bi jkl

]2uk

]Xj ]Xl
,

~1!

whererX is the material density atX and Bi jkl [d iks j l (X)
1Ci jkl (X). Ci jkl (X), the thermodynamic elastic coefficient
evaluated atX, is defined at constant entropyS as

Ci jkl ~X!5rXS ]2U

]j i j ]jkl
D

S;X

. ~2!

In Eq. ~2!, U is the internal energy per unit mass of the
material, the strain from the reference stateX is given by

j i j 5
1

2 S ]ui

]Xj
1

]uj

]Xi
1

]us

]Xi

]us

]Xj
D , ~3!

and the thermodynamic coefficientsCi jkl (X) have a familiar
symmetry as the elastic stiffness constants defined in the
stress-free natural state do.

However, the elastic coefficientsBi jkl lack the full sym-
metry found inCi jkl (X) and cannot be expressed using the
abbreviated Voigt notation. We rearrangeBi jkl and define a
new set of wave propagation coefficientsC̃i jkl , which can be
abbreviated using Voigt’s notation. Following Huang16 and
Born and Huang,17 we write C̃i jkl as

C̃i jkl 5~Bik jl 1Bil jk !/25d i j skl1~Cik jl 1Cil jk !/2. ~4!

Note thatC̃i jkl 5C̃j ikl andC̃i jkl 5C̃i j lk . C̃i jkl obeys Huang’s
condition

C̃i jkl 2C̃kli j 5C̃mn2C̃nm5d i j skl2dkls i j , ~5!

where the subscriptsm andn (m,n51,2,...,6) are the Voigt
indices. The 636 arrayC̃mn is shown in Table III of Ref. 12
and has in general 26 linearly independent elements. Using
the C̃i jkl coefficients, the equation of motion is expressed as

rXüi5C̃i jkl

]2uj

]Xk ]Xl
. ~6!

Writing the acoustical tensor as

G i j ~n!5C̃i jkl nknl ~7!

for the plane wave propagating with wave vectork
52pn/l, wave lengthl, wave normaln, and phase velocity
V, one obtains the phase velocity equations

~C̃i jkl nknl2rXV2d i j !uj50, ~8!

detuG i j 2rXV2d i j u50. ~9!

G i j is the symmetrical tensor whose eigenvectors are the pos-
sible directions of particle displacement and whose eigenval-
ues are the corresponding values ofrXV2.

In terms of slowness,s5n/V5k/v defined as the in-
verse phase velocity, wherev denotes the angular frequency,
the slowness surfaceL of the stressed medium is represented
by

L5detuC̃i jkl sksl2rXd i j u50. ~10!

The group velocityVg , commonly defined as

Vg[“kv, ~11!

satisfies the relations

Vg–n5V, Vg–s51. ~12!

From Eqs.~10! and ~12! it can be shown that1

Vg5
“sL

s–“sL
, ~13!

which indicates that the group velocity points in the direction
normal to the slowness surface, as in the case of the stress-
free natural state. Note that Eq.~13! holds valid for a stressed
medium as a result ofG i j 5G j i in Eq. ~7!, C̃i jkl ÞC̃kli j not-
withstanding.

In the following we will restrict ourselves to the wave
propagation with wave normaln lying in the symmetry plane
of a medium possessing orthotropic or higher symmetry,
where the three axes of orthotropic symmetry are taken as
the coordinate axes,X1 , X2 , andX3 , whose directions are
simply denoted as@100#, @010#, and @001#, respectively.
Likewise, we denote theX1X2 plane whose normal points in
theX3 direction by~001!, and analogously for theX2X3 and
X1X3 planes. The orthotropic medium is characterized by
nine thermodynamic, elastic-stiffness coefficients:C11, C22,
C33, C12, C23, C13, C44, C55, andC66, just as an ortho-
rhombic medium in the stress-free natural state is. Here, we
deal with only those media which possess three mutually
perpendicular symmetry planes, and therefore exclude mate-
rials of triclinic, monoclinic, and trigonal symmetries. A me-
dium, which has orthorhombic, tetragonal~422, 4mm, 4̄2m,
and 4/mmm classes!, cubic, hexagonal~622, 6mm, 6̄2m,
and 6/mmm classes!, transversely isotropic, or isotropic
symmetry in the stress-free natural state, can be considered
as a medium with orthotropic or higher symmetry, when it is
uniaxially, biaxially, or triaxially loaded with the directions
of the principal-stress axes coinciding with those of material
symmetry. This condition for maintenance of orthotropic or
higher symmetry can be stated as

s125s135s2350 or
~14!

]Xi /]aj5l id i j ~ i not summed!,

whereaj represents a coordinate of a particle along thej -th
direction in the stress-free natural state andl i is a principal
stretch in thei -th direction. Note that the symmetry relation
Cmn5Cnm holds for the medium in the natural state, while
Huang’s condition Eq.~5! holds for a stressed medium.

II. PHASE VELOCITIES OF A STRESSED MEDIUM

Phase velocities in a stressed anisotropic medium are
treated in detail in Refs. 12–14. We introduce this section as
a reference that is necessary for the derivation of group ve-
locities to be presented in Sec. III. For waves propagating on
symmetry planes of an elastic medium, we choose specifi-
cally, without loss of generality, a wave normaln
5@n1,0,n3#5@sinu,0,cosu# lying on the ~010! plane at an
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angleu to the@001# direction. Because of the mirror symme-
try across the~001! plane, we restrict the angleu to 290°
<u<90°. Wave propagations in the~100! and ~001! sym-
metry planes can be treated by the proper rotation of indices.

The acoustical tensorsG i j in the ~010! plane can be
found in Table III of Ref. 12 by settingn250 ands1350.

Equation~9! for the wave propagation in the~010! plane
yields

~G222rXV2!@~G112rXV2!~G332rXV2!2G13
2 #50.

~15!

For simplicity of notation we introduce the following
identities:

C116[C116C55, C336[C336C55,
~16!

C136[C136C55;

for the pure-index, effective elastic coefficientsCmm
( i ) ~m not

summed;m51,2,...,6!,

Cmm
~ i ! [Cmm1s i i ~ i not summed;i 51,2,3!; ~17!

for mixed-index, effective elastic coefficientsCmn
( i ) ~mÞn;

m,n51,2,3!,

Cmn
~ i ! [Cmn2s i i ~ i not summed;i 51,2,3!; ~18!

and for the following effective elastic-stiffness constants

C116
~1! [C11

~1!6C55
~1! , C136

~1! [C13
~1!6C55

~1! ,
~19!

C336
~3! [C33

~3!6C55
~3! , C136

~3! [C13
~3!6C55

~3! .

The first term in the parenthesis of Eq.~15! represents
the pure-transverse (PT) mode polarized in the@010# direc-
tion and propagating with phase velocity

rXV25G225C66
~1! sin2 u1C44

~3! cos2 u ~PT mode!.
~20!

The square bracket term in Eq.~15! yields the phase veloci-
ties for the quasilongitudinal (QL) and quasitransverse
(QT) modes propagating on the~010! plane and polarized
on the same plane:

~rXV2!22~G111G33!~rXV2!1~G11G332G13
2 !50, ~21!

2rXV25G111G336@~G112G33!
214G13

2 #1/2

5C111
~1! sin2 u1C331

~3! cos2 u

6@~C112 sin2 u2C332 cos2 u!2

14C131
2 sin2 u cos2 u#1/2, ~22!

where1 and2 signs in front of the square bracket refer to
the QL andQT modes, respectively.

Equations~20! and ~22! express the phase velocities of
various modes propagating in an arbitrary direction on the
~010! symmetry plane of a stressed medium. Similar expres-
sions can be found for the other symmetry planes,~100! and
~001!, by an appropriate rotation of indices for the elastic
constants and stresses. In particular, for the pure-longitudinal
and pure-transverse modes propagating in the symmetry di-
rections, one can easily find in matrix form

rX@Vi j
2 #5F C11

~1! C66
~1! C55

~1!

C66
~2! C22

~2! C44
~2!

C55
~3! C44

~3! C33
~3!
G , ~23!

whereVi j denotes the phase velocity propagating in theXi

direction and polarized in theXj direction. Equation~23!
indicates that all the pure-index or diagonal-element thermo-
dynamic elastic coefficients can be determined from mea-
surements of the pure-mode phase velocities propagating in
three symmetry directions. Note that the elastic constants
C112 andC332 appearing in Eq.~22! can be similarly deter-
mined using Eq.~23!, sinceC1125C112

(1) andC3325C332
(3) .

This means that the elastic coefficientC1315C131C55 ap-
pearing in Eq.~22! can also be determined from measure-
ments of theQL- or QT-mode phase velocity together with
the pure-mode phase velocities propagating in symmetry di-
rections. Note also thatC1315C131

(1) 5C131
(3) and therefore,

C13
(1) and C13

(3) in Eq. ~18!, which appear in the formulas of
the effective Young’s modulus and Poisson’s ratios of a
stressed orthotropic medium,18,19 can also be similarly ob-
tained from measurements of relevant pure- andQL- ~or
QT-! mode phase velocities.

Since the phase and group velocities are identical for
waves propagating along the symmetry directions, Eq.~23!
also applies for the pure-mode group velocity by simply re-
placing Vi j by (Vg) i j . On the other hand, along an off-
symmetry direction on the symmetry plane, the direction of
the group velocity deviates from that of the wave normal,
and in the following section we deal with the derivation of
the group velocity formulas and their application to determi-
nation of the group velocity surfaces and the mixed-index
elastic coefficients.

III. GROUP VELOCITIES OF A STRESSED MEDIUM

The group velocity corresponding to a wave normaln
5@sinu,0,cosu# in the ~010! slowness plane can be calcu-
lated using Eq.~13!. Because of the mirror symmetry across
the ~010! symmetry plane, all the points in the~010! slow-
ness plane map onto the~010! plane of the group-velocity
surface. However, except for isotropic and transversely iso-
tropic media, the converse is not generally true, as is well
known in the theory of phonon focusing.20,21 Because of the
nonspherical, concave, or convex shape of theQT slowness
surface of an anisotropic medium, some points that do not lie
in the ~010! section of theQT slowness surface may map
onto the ~010! group-velocity section. The group-velocity
sections that do not correspond to the~010! slowness plane
are not of interest here. Hence, we deal with only those
group velocity sections that correspond to the~010! slowness
plane. We denote the direction of group velocity by an angle
z measured to the@001# direction. Because of the mirror
symmetry across the~001! plane, we confinez to 290°<z
<90°, just asu. For simplicity of notation we write

p[tan u, q[tan z. ~24!
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A. Pure-transverse mode

Equation~20! yields the equation of the~010! slowness
section of the pure-transverse mode

LPT5C66
~1!s1

21C44
~3!s3

22rX50, ~25!

rXs3
225C66

~1!p21C44
~3! . ~26!

Applying Eq. ~13! to Eqs.~25! and ~26!, one obtains

Vg15s3C66
~1!p/rX , ~27a!

Vg35s3C44
~1!/rX , ~27b!

q5tan z5
Vg1

Vg3
5

C66
~1!p

C44
~3! , ~28a!

p5tan u5
C44

~3!q

C66
~1! , ~28b!

~rXVg
2!215@rX~Vg1

2 1Vg3
2 !#21

5~C66
~1!!21 sin2 z1~C44

~3!!21 cos2 z. ~29!

Equations~28a! and ~28b! give the conversion relations be-
tween the directions of phase and group velocities of the
SH-polarized PT mode. Equation~29! indicates the elliptical

section ofVg with the principal semiaxes given byAC44
(3)/rX

andAC66
(1)/rX.

B. Quasilongitudinal and quasitransverse modes

We again introduce for simplicity of notation

A[C11
~1!C33

~3!1C55
~1!C55

~3!2C131
2 , ~30!

B[C112C33222C131
2 5C112

~1! C332
~3! 22C131

~1! C131
~3! , ~31!

D[
1

n3
2 @~G112G33!

214G13
2 #1/2

5@~C112p22C332!214C131
2 p2#1/2, ~32!

F[C11
~1!C55

~1!s1
41C33

~3!C55
~3!s3

41As1
2s3

2, ~33!

G[rX~C111
~1! s1

21C331
~3! s3

2!, ~34!

U1[2C11
~1!C55

~1!p21A2rXs3
22C111

~1! , ~35!

U3[2C33
~3!C55

~3!1Ap22rXs3
22C331

~3! , ~36!

Q[C111
~1! p21C331

~3! 22rXs3
22, ~37!

where the quantityrXs3
22 can be obtained from Eq.~22! and

expressed as

2rXs3
225C111

~1! p21C331
~3! 6D. ~38!

The positive and negative signs in front ofD in Eq. ~38!
correspond to theQL and QT modes, respectively.D is by
definition always greater than zero in an anisotropic medium.
Substitution of Eq.~38! into Eq. ~37! yields the identity

Q57D, ~39!

where the negative and positive signs correspond to theQL
andQT modes, respectively.B in Eq. ~31! andD in Eq. ~32!
are related by

B5
1

2p2 ~C112
2 p41C332

2 2D2!. ~40!

The group velocities of both theQL andQT modes can
be found analytically from the equation of the slowness sur-
face, which can be derived from Eq.~21! as

L5F2G1rX
250, ~41!

whereF andG, specified by Eqs.~33! and~34!, are respec-
tively homogeneous functions of degree 4 and 2 ins. Using
Euler’s theorem on a homogeneous function, it is easy to
show that

s•¹sL54F22G52~G22rX
2 !52rXs3

2Q. ~42!

From Eq.~13! one obtains

Vg15
s1U1

rXQ
, Vg35

s3U3

rXQ
, ~43!

q[tan z5
Vg1

Vg3
5

s1U1

s3U3
5

U1p

U3
, ~44!

rXVg
25rX~Vg1

2 1Vg3
2 !5

~11q2!U3
2

rXs3
22Q2 . ~45!

To proceed further, we first consider theQL mode and then
the QT mode.

1. Quasilongitudinal mode

For theQL-mode propagation the upper sign in front of
Eqs.~38! and~39! applies to Eqs.~35!–~37!, ~44!, and~45!.
After some algebra,U1 andU3 in Eq. ~44! reduce to

U15~B2C112
2 p22C111

~1! D !/2, ~46!

U35~Bp22C332
2 2C331

~3! D !/2. ~47!

Substitution of Eqs.~46! and ~47! into Eq. ~44! leads to the
following relationship

q5
p~B2C112

2 p22C111
~1! D !

Bp22C332
2 2C331

~3! D
, ~48!

which can also be expressed in the form of

C112
2 p31q~Bp22C332

2 !2Bp1~C111
~1! p2C331

~3! q!D50.
~49!

Equation~48! or ~49! can be used to find the direction of a
wave normalp corresponding to that of a group velocity
lying in the ~010! plane and vice versa, when the relevant
values of thermodynamic elastic coefficients and stresses ex-
erted in a medium are known. Substituting Eq.~40! into Eq.
~49! and rearranging the resulting equation in terms of pow-
ers inD, one obtains

~12pq!D222p~C331
~3! q2C111

~1! p!D1~11pq!

3~C112
2 p42C332

2 !50, ~50!

which yields
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D5
1

12pq
$p~C331

~3! q2C111
~1! p!6@p2~C331

~3! q2C111
~1! p!2

2~12p2q2!~C112
2 p42C332

2 !#1/2%. ~51!

For a given group directionq in the above equation, we
choose the region ofp which makesD real and positive.
Finally, from Eqs.~38!–~40!, ~47!, and~45!, one obtains the
expression for the group velocity

rXVg
25

~11q2!@C112
2 p42C332

2 2D~D12C331
~3! !#2

8D2~C111
~1! p21C331

~3! 1D !
.

~52!

The above equation can be used in combination with
either Eq.~49! or Eq.~51!. The former case applies when the
relevantCi j and stresses acting in a medium are known. For
a given group-velocity directionq5tanz, one uses Eq.~49!
to find p; Eq. ~32! to calculateD; and then Eq.~52! to obtain
the group velocity. The latter case applies to an inverse ap-
proach by whichC131 can be found from the measured val-
ues of a group velocityVg for the given directionq, C111

(1) ,
C112 , C331

(3) , and C332 . As indicated by Eq.~23!, C111
(1) ,

C1125C112
(1) , C331

(3) , andC3325C332
(3) can be obtained from

measurements of the pure-mode wave speeds propagating in
the symmetry directions. Equation~52!, whenD in it is sub-
stituted by Eq.~51! with the known values ofq, Vg , C111

(1) ,
C112 , C331

(3) , andC332 , becomes a function of single vari-
ablep, which can be solved for to find the values ofD>0,
B, andC131 via Eqs.~51!, ~40!, and~31!, respectively. This
in turn yields the value ofC13 if the stressess11 ands33 are
known.

2. Quasitransverse mode

In the propagation of theQT mode, Eqs.~38! and ~39!
are both determined with the lower sign in front ofD. The
application of very similar procedures to those taken in the
QL mode yields

q5
p~B2C112

2 p21C111
~1! D !

Bp22C332
2 1C331

~3! D
, ~53!

C112
2 p31q~Bp22C332

2 !2Bp2~C111
~1! p2C331

~3! q!D50,
~54!

D5
1

12pq
$p~C111

~1! p2C331
~3! q!6@p2~C111

~1! p2C331
~3! q!2

2~12p2q2!~C112
2 p42C332

2 !#1/2%, ~55!

rxVg
25

~11q2!@C112
2 p42C332

2 2D~D22C331
~3! !#2

8D2~C111
~1! p21C331

~3! 2D !
. ~56!

The calculation of the group velocity for a given directionz
and the determination ofC131 from the relevant measure-
ments can be achieved in a way similar to those achieved in
the QL mode. However, the measurement of the group ve-
locity of theQT mode is generally much more difficult than
that of the QL mode in the signal generated by a small,
pointlike source and detected by a small, pointlike piezoelec-
tric detector, except in the case of the signal detected by the
noncontact displacement transducer such as a capacitive

transducer or a laser interferometer. Detailed discussion on
the group velocity of theQL andQT modes and its applica-
tion to determination of elastic constants in nonacoustoelas-
tic case (s i j 50) is provided in Refs. 5–8.

C. Extension to higher-symmetry media

1. Stressed tetratropic medium

A material of cubic symmetry of 432, 4̄3m, andm3m
classes behaves similar to but not exactly as one of tetrago-
nal symmetry, when the material is stressed in three cubic-
axes directions with two equal biaxial stresses or when it is
uniaxially loaded along a cubic-axis direction. We term here
such stressed media as having tetratropic symmetry. The
Huang’s condition Eq.~5! holds for tetratropic symmetry,
while C̃i jkl 5C̃kli j for tetragonal symmetry. This means that
tetragonal symmetry is maintained only when hydrostatic
pressures are applied to a material of tetragonal symmetry. A
medium of tetragonal symmetry of 422, 4mm, 4̄2m, and
4/mmm classes also behaves tetratropically when it is de-
formed with three principal stresses,s115s22 and s33. It
has a total of six thermodynamic elastic coefficients:

C115C22, C33, C12,
~57!

C135C23, C445C55, C66,

where the direction of tetratropic symmetry is taken as the
X3 direction.

In a tetratropic material, the~010! plane is equivalent to
the ~100! plane and the group velocities of thePT, QL, and
QT modes propagating in these planes and the~001! plane
are governed by those equations previously derived for
orthotropic material with the use of Eq.~57! ands115s22.
In the $n1 ,n̄1,0%-type diagonal symmetry plane, where the
wave normal and group velocity propagate in the^n1 ,n1 ,n3&
direction at anglesu andz to thex3 direction, respectively,

n1
25n2

25nd
2/25sin2 u/2, nd

21n3
251. ~58!

Equation~9! is now factored as

~G112G122rV2!@~G332rV2!~G111G122rV2!22G13
2 #

50, ~59!

where

G115~C11
~1!1C66

~1!!nd
2/21C44

~3!n3
2,

G335C44
~1!nd

21C33
~3!n3

2,
~60!

G125~C121C66!n1n25~C12
~1!1C66

~1!!nd
2/2,

G135~C131C44!n1n35C131ndn3 /&.

The first factor in parenthesis of Eq.~59! yields the re-
lation for the PT mode propagating on the$n1 ,n̄1,0%-type
plane and polarized in thên1 ,n̄1,0& direction. Following the
similar procedures as in Sec. III A, one finds exactly the
same relations for thePT mode on the diagonal plane of a
tetratropic medium by replacingC66

(1) by (C11
(1)2C12

(1))/2 in
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Eqs.~20!, ~28a!, ~28b!, and~29!. ThePT-mode group veloc-
ity is then given by

~rxVg
2!215@~C11

~1!2C12
~1!!/2#21 sin2 z

1~C44
~3!!21 cos2 z ~PT mode!. ~61!

The terms in the square bracket of Eq.~59! yield rela-
tions for theQL and QT modes. Following the procedures
similar to those in Sec. III B of this paper and Sec. II C of
Ref. 5, one finds that exactly the same relations betweenVg ,
p5tanu, q5tanz, Ci j , ands i j can be obtained for theQL
andQT modes in the corresponding Eqs.~46!–~56! and the
defining Eqs.~31! and ~32! by simply replacing:C55 by
C44 ; C55

(1) by C44
(1) ; C55

(3) by C44
(3) ; C11 by K; C116 by K6 ;

C11
(1) by K (1); and C116

(1) by K6
(1) , whereK, K6 , K (1), and

K6
(1) are now defined as

K[~C111C1212C66!/2, ~62a!

K6[K6C44. ~62b!

K ~1![~C11
~1!1C12

~1!12C66
~1!!/2, ~63a!

K6
~1![K ~1!6C44

~1! , ~63b!

whereC11
(1) , C66

(1) , C12
(1) , andC44

(1) have previously been de-
fined in Eqs.~17! and ~18!. The group-velocity and relevant
relations for theQL andQT modes are

K2
2 p31q~Bp22C332

2 !2Bp6~K1
~1!p2C331

~3! q!D50, ~64!

D5
1

12pq
$6p~C331

~3! q2K1
~1!p!6@p2~C331

~3! q2K1
~1!p!2

2~12p2q2!~K2
2 p42C332

2 !#1/2%, ~65!

rxVg
25

~11q2!@K2
2 p42C332

2 2D~D62C331
~3! !#2

8D2~K1
~1!p21C331

~3! 6D !
. ~66!

In Eqs.~64!–~66! above, the upper and lower signs in both6
and7 apply to theQL andQT modes, respectively, except
for the 6 sign in front of the square bracket in Eq.~65!,
which applies to bothQL andQT modes. Note thatB andD
in Eqs. ~64!–~66! are respectively defined by Eqs.~31! and
~32!, whereC1125C112

(1) is now replaced byK25K2
(1) .

2. Stressed transversely isotropic medium

An isotropic medium at the natural state behaves as a
transversely isotropic medium when it is loaded in three ar-
bitrarily chosen, mutually perpendicular directions with two
equal biaxial stresses, says115s22. The case ofs115s22

50 is common in uniaxial tension or compression tests. In a
transversely isotropic medium there are five independent
thermodynamic elastic coefficients:

C115C22, C33, C12, C135C23,
~67!

C445C55, C665~C112C12!/2.

Any plane parallel to the axis of transverse symmetry is
called a zonal plane and all the zonal planes are identical.
There is no distinction between the$010%- and $110%-type
planes, which are all identical to the zonal plane. Any zonal

plane is a principal plane and any direction normal to the
zonal plane is also a principal-stress direction.

For the wave propagation in the zonal plane with wave
normaln and group velocityVg directed at anglesu andz to
the X3 symmetry axis, respectively, there is a one-to-one
correspondence between the directions of the wave normal
and the group velocity and all the points in the zonal slow-
ness plane map themselves onto the same zonal group-
velocity plane. What holds for the~010! plane of the ortho-
tropic medium in Secs. III A and III B also holds for the
zonal plane of a transversely isotropic medium with Eq.~67!
ands115s22 substituted in the appropriate relations.

For the wave propagation in the~001! basal plane nor-
mal to the axis of transverse symmetry, all the propagation
directions are identical and principal symmetry directions.
All the phase velocities are of the pure mode and coincide
with group velocities of the pure mode. Their relations are
indicated by the first-row elements of Eq.~23! with Eq. ~67!
ands115s22 and satisfied.

IV. GROUP-VELOCITY SECTIONS ILLUSTRATED
WITH A UNIAXIALLY LOADED SILICON CRYSTAL

In this section we illustrate the effect of stress on the
group-velocity sections with a silicon crystal when it is
uniaxially compressed in the direction that coincides with a
cubic-axis direction of the crystal in the stress-free natural
state. We will take, as an example, the~010! and ~11̄0!
group-velocity sections when the silicon crystal is com-
pressed normal to the~001! plane ats33521 GPa with all
other stress components being zero. As mentioned in Sec.
III C 1, the silicon crystal in this case behaves tetratropically
and it has six thermodynamic elastic coefficientsCi jkl as
indicated by Eq.~57!. They are related to the second- and
third-order elastic constants referred to the coordinates of the
stress-free natural states by12,22

Ci jkl 5
rX

ra

]Xi

]ap

]Xj

]aq

]Xk

]ar

]Xl

]as
cpqrs

N ~X!

5
rX

ra

]Xi

]ap

]Xj

]aq

]Xk

]ar

]Xl

]as
@cpqrs~a!1cpqrsmn~a!hmn

1•••#, ~68!

wherea denotes a coordinate of a particle in the stress-free
natural state,cpqrs

N (X) is the thermodynamic elastic coeffi-
cient that is referred to the natural state and evaluated at the
initial stateX, cpqrs(a) andcpqrsmn(a) are the second-order
and third-order elastic constants, which are both referred to
and evaluated at the natural statea, and

hmn5S 1

2D F]um

]an
1

]un

]am
1

]us

]am

]us

]an
G ~69!

is a finite strain referred to the natural state.
cpqrs(a) for cubic silicon are:2 c115165.7 GPa,c12

563.9 GPa, andc44579.56 GPa. Its density at the natural
state isra52332 kg/m3. Using these values of the second-
order elastic constants and the density evaluated at the natu-
ral state, the~010! and ~11̄0! group-velocity sections of sili-
con are plotted with solid lines in Figs. 1 and 2, respectively.
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The third-order elastic constantscpqrsmn(a) of silicon, evalu-
ated in the natural state, are:23,24 c11152795 GPa, c112

52445 GPa,c1235275 GPa, c144515 GPa, c15552310
GPa, andc4565286 GPa. Using the values of the second-
order and third-order elastic constants of silicon and the
identity relations between the third-order elastic constants:

c1115c2225c333, c1445c2555c366, c1125c2235c1335c113

5c1225c233, c1555c2445c3445c1665c2665c355 for cubic
silicon,Ci jkl ats33521 GPa are calculated according to Eq.
~68! to yield: C115C225168.51 GPa,C335165.31 GPa,
C445C55580.70 GPa, C66579.06 GPa, C12563.32 GPa,
and C135C23565.72 GPa. The densityrX52340 kg/m3 is
obtained ats33521 GPa. Using these thermodynamic elas-

FIG. 1. The~010! group-velocity sections of silicon at natural state and at
s33521 GPa:~a! global view;~b! expanded view of the transverse group-
velocity sections near the@001# direction; and~c! expanded view of the
transverse group-velocity sections near the@100# direction.

FIG. 2. The~11̄0! group-velocity sections of silicon at natural state and at
s33521 GPa:~a! global view;~b! expanded view of the transverse group-
velocity sections near the@001# direction; and~c! expanded view of the
transverse group-velocity sections near the@110# direction.
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tic coefficientsCmn obtained ats33521 GPa, the~010! and
~11̄0! group-velocity sections of silicon are also displayed in
Figs. 1 and 2, respectively, with dotted lines. The group-
velocity sections near the@001# and@100# axes of these sym-
metry planes, which correspond to the wave normals lying in
nonsymmetry planes, are neither of interest here nor within
the scope of this work and therefore not included in the fig-
ures. The group velocity of the longitudinal (L) mode in the
@001# and @100# directions is 8.429 mm/ms in the natural
state. Unders33521 GPa, the change in group velocity of
this mode is about20.59% in the@001# loading direction,
while it is about 0.67% in the@100# transverse to the loading
direction. The group velocity of theQL mode at s335
21 GPa varies from that in the natural state by 0.37% in the
@101# direction, 45° away from the loading direction, while it
changes minimally by20.016% in the@110# perpendicular
to the loading direction. The group velocities along both the
@101# and the@110# directions in the natural state are 9.129
mm/ms.

Figures 1~b!, 1~c!, 2~b!, and 2~c! display detailed views
of the group velocity sections of the transverse mode near
the symmetry directions. Figures 1~b! and 2~b! indicate that
along the@001# direction are four rays with distinct veloci-
ties: pure L ray shown, PT ray shown in both figures,
intermediate-speedQT (IQT)ray shown in Fig. 2~b!, and
slow QT (SQT) ray shown in Fig. 1~b!. These rays propa-
gate at 8.429 mm/ms, 5.841 mm/ms, 5.767 mm/ms, and 5.646
mm/ms, respectively, in the natural state. Their speeds
change respectively by20.59% ~already mentioned!,
20.085%, 20.77%, and20.82% ats33521 GPa. The
group-velocity sections of the fastQT (FQT) and PT
modes make a tangential contact with each other in the@001#
direction, and their speeds are identical along this direction
both in the natural state and ats33521 GPa. TheFQT
mode along the@001# direction becomes a pure mode which
is polarized in the@100# direction, while thePT mode is
polarized in the@010# direction as mentioned before. Note
that the IQT and SQT rays are of the oblique mode, the
wave normals of which lie in nonsymmetry directions on the
~11̄0! and ~010! planes, respectively.

The IQT ray along the@100# direction in the natural
state propagates at 5.767 mm/ms with its oblique wave nor-
mal lying on the$011%-type planes. However, this ray no
longer travels along the@100# direction under the influence
of stresss33, since the presence of the stresss33 causes the
$011%-type planes to be no longer symmetry planes. Refer-
ring to Fig. 1~c!, the group velocity of theSQT ray with
5.646 mm/ms in the natural state varies very slowly with
stress~20.030% ats33521 GPa! along the@100# direction.
The group velocities of theFQT andPT modes, which are
degenerate with the speed 5.841 mm/ms along the@100# di-
rection in natural state, split into opposite directions under
the stresss33 and the difference between them, 0.0602
mm/ms ats33521 GPa, is about 1.03% of their speed in the
natural state. The former mode is polarized in the@001# di-
rection, and the latter in the@010# as aforementioned. The
group velocities of these pure modes along the@100# direc-
tion are equal to their phase velocities and they are respec-
tively called the SV ~shear vertical! and SH ~shear-

horizontal! types. Under a stresss22 acting, these two modes
interchange their role. It is well known in acoustoelasticity
that the difference between the wave speeds of theSV and
SH types that propagate in the@100# normal to the loading
direction is proportional to the difference between the two
principal stresses,s332s22.14

In the face-diagonal direction@110# @see Fig. 2~c!#, the
group velocity of theFQT ray changes by 0.54% from 5.841
mm/ms in the natural state to 5.873 m whens33521 GPa,
while that of theSQT ray hardly changes~0.15%! from
5.828 mm/ms in the natural state to 5.837 m ats33

521 GPa. However, the change in the group velocity of the
PT mode is quite significant. It varies by 1.5% from 4.672
mm/ms in the natural state to 4.741 mm/ms at s33

521 GPa.
A phase velocity of theSH-polarizedPT mode propa-

gating in an oblique direction of the symmetry planes is dif-
ficult to measure, but its group velocity is easy to obtain by
employing a point-source/point-detector technique.7,8 This
mode provides certain advantages for estimating residual
stresses acting in an elastic body.25,26We take an example of
theSH-mode propagating in the 45° direction to the loading
direction in the~010! and ~11̄0! planes. It is easy to obtain
from Eqs.~29! and ~61! that thesePT modes propagate in
the natural state at the group velocities 5.841 mm/ms in the
~010! plane and 5.160 mm/ms in the ~11̄0! plane, while at
s33521 GPa they travel respectively at 5.824 mm/ms and
5.204 mm/ms. The effect of the uniaxial compressive stress
s33 on thePT mode in silicon is greater in the~11̄0! plane
than in the~010! plane.

It may be interesting to see the stress sensitivity of the
magnitude and direction of group velocities at the cuspidal
edges shown in Figs. 1~b!, 1~c!, 2~b!, and 2~c!. We follow
the method adopted in Ref. 5 for calculation of the polar
coordinates of these points, the magnitude of group velocity
Vg and the angular directionz. In the natural state the coor-
dinates of these cuspidal edges near the@001# direction
shown in Figs. 1~b! and 2~b! are calculated to be~5.934
mm/ms, 6.72°! and~5.873 mm/ms, 3.40°!. They respectively
move to~5.953 mm/ms, 7.83°! and ~5.887 mm/ms, 4.71°! at
s33521 GPa. We notice that changes in the direction of the
cuspidal edges are rather substantial, being more than 1°.
The cuspidal edges near the@100# and @110# directions
shown in Figs. 1~c! and 2~c! vary respectively from~5.934
mm/ms, 83.28°! and ~5.846 mm/ms, 89.16°! to ~5.983 mm/
ms, 82.57°! and ~5.886 mm/ms, 88.25°!, resulting in the di-
rectional change of 0.71° and 0.91° and in the appreciable
variation of the magnitude of their group velocities by 0.8%
and 0.7%, respectively. However, because of the effect of
eidolon associated with the diffraction of sound waves of
finite wave length,27 it is not easy to measure the directional
change.

Overall, it is worth mentioning that the effect of stress
on the group velocity of thePT andFQT modes is larger for
waves propagating in the direction normal to loading and
minimal along the loading direction, while for the oblique
modes, such asIQT andSQTmodes, the effect is the oppo-
site; that is, much greater along the loading direction and
minimal along the direction normal to loading. For the lon-
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gitudinal mode propagating in the~010! plane, the effect is
roughly equal in magnitude in both directions but opposite in
sign. In the~11̄0! plane the stress effect on the longitudinal
mode is greater along the loading direction and minimal in
the direction normal to the loading.

V. GROUP VELOCITY OF THE OBLIQUE MODE
ALONG THE SYMMETRY DIRECTION

One distinct feature found in some anisotropic materials
is the presence of an oblique-mode group velocities along the
symmetry directions, such as theSQTand IQT rays shown
in Figs. 1~b!, 1~c!, 2~b!, and 2~c!. These oblique-mode rays
do not exist in an isotropic material. It may be worthwhile to
derive the expressions governing the group velocity of the
oblique modes along the symmetry directions. The oblique-
mode rays are always associated with theQT slowness sur-
face and the existence of these rays along the symmetry di-
rection requires theQT slowness surface to be concave
around that symmetry direction. The concavity condition in a
stress-free natural state was discussed by Musgrave1 and
Wang10 and we discuss the concavity condition of theQT
slowness surface in a stressed medium for the case that only
the normal stress componentss i i ~i not summed;i 51,2,3!
are acting and all shear stress components in the medium are
zero, i.e.,s125s135s2350. Following the similar proce-
dures used in Refs. 1 and 10, it is easy to show the concavity
conditions both of the~010! slowness section of theQT
mode in an orthotropic material and of the~11̄0! slowness
section of theQT mode in a tetratropic material. For normal
solids in which the conditions ofC11.C55, C33.C55, and
K.C44 hold, the concavity conditions around the@001# di-
rection are

C131
2 .C11

~1!C332 ~70a!

and

C131
2 .K ~1!C332 , ~70b!

for the ~010! and ~11̄0! QT slowness sections, respectively.
Likewise, the concavity conditions around the@100# direc-
tion of the ~010! QT slowness section and around the@110#
direction of the~11̄0! QT slowness section are respectively
given by

C131
2 .C33

~3!C112 ~71a!

and

C131
2 .C33

~3!K2 . ~71b!

When conditions~70a!, ~70b!, ~71a!, and ~71b! are sat-
isfied, there exist the rays of the oblique mode propagating
along the symmetry directions, and they are all satisfied in
silicon. The expressions for the group velocityVg of the
oblique mode along the@001# direction can be derived by
similar procedures found in Refs. 6 and 9 and written as

C112
2 ~rXVg

2!212~C111
~1! C131

2 2C112Cpr2!rXVg
2

1~C131
4 22Cpr1C131

2 1Cpr2
2 !50 ~72!

for the ray whose oblique wave normal lies on the~010!
plane of the orthotropic material, and

K2
2 ~rXVg

2!212~K1
~1!C131

2 2K2Kpr2!rXVg
2

1~C131
4 22Kpr1C131

2 1Kpr2
2 !50 ~73!

for the ray whose oblique wave normal lies on the~11̄0!
plane of the tetratropic material. In Eqs.~72! and ~73! Cpr6

andKpr6 are defined by

Cpr6[C11
~1!C33

~3!6C55
~1!C55

~3! , ~74a!

Kpr6[K ~1!C33
~3!6C44

~1!C44
~3! . ~74b!

Similar expressions for the group velocity of the oblique
mode propagating either in the@100# or in the@110# direction
can be found by interchanging the indices 1 and 3 in Eq.~72!
for the former direction and by interchangingK2 andC332

and also interchangingK1
(1) and C331

(3) in Eq. ~73! for the
latter direction. Using Eqs.~72! and ~73! and equivalent
equations, the group velocities of theIQT andSQT modes
along the symmetry directions of silicon ats33521 GPa
can be conveniently obtained and are identical with those in
Figs. 1 and 2.

VI. DISCUSSION

We have derived various group-velocity formulas for the
symmetry planes of a stressed elastic medium with orthotro-
pic or higher symmetry and shown the effect of uniaxial
compressive stress on the~010! and ~11̄0! group-velocity
sections and the cuspidal features of a tetratropic silicon
specimen as an example.

The derived formulas can also be used to determine the
effective elastic coefficients and in principle the third-order
elastic constants via Eq.~68!. Since the determination of the
third-order elastic constants are quite a complicated topic,
interested readers are referred to Refs. 22 and 24 for detail. It
was already mentioned that the pure-index effective elastic
coefficientsCmm

( i ) ~m not summed;m51,2,...,6;i 51,2,3! can
be determined via Eq.~23! from measurements of the group
or phase velocities of the pure-mode propagating in the sym-
metry direction. Determination of a mixed-index elastic co-
efficient, sayC131 , can be calculated from theQL or QT
group-velocity data measured along an oblique direction in
the symmetry plane and using the results developed in Sec.
III. For detailed procedures on determination of the mixed-
index elastic constants, readers are referred to Sec. III B of
Ref. 5. If the QT slowness surface is concave around the
symmetry direction, say the@001# axis, C131 can be also
determined via Eqs.~72! and~73! from measurements of the
group velocities of the oblique mode along the@001# direc-
tion. Kim et al.6,9 determinedC13 of zinc andC12 of silicon
in their stress-free, natural state from the measurements of
the group velocities of the oblique mode propagating in the
@001# direction. SinceC1315C131

(1) 5C131
(3) , one can also de-

termine bothC13
(1)5C132s11 and C13

(3)5C132s33, which
appear in the expressions of the effective elastic coefficients
Ki jkl

S [(]s i j /]ekl)S , the effective Young’s modulus and
Poisson’s ratios.18

When isotropic materials, such as steel and aluminum
alloy commonly used in engineering structures, are subjected
to uniaxial tension or compression, they behave as trans-
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versely isotropic materials with the axis of transverse sym-
metry parallel to the loading direction. In this case Eq.~67!
holds and one can calculate the group-velocity sections in a
similar way as we did with the~001! silicon crystal. This
situation often arises in estimation of residual stresses when
it is necessary to measure the acoustoelastic birefringence
constant. Since the third-order elastic constants of polycrys-
talline materials vary significantly from specimen to speci-
men and reliable, reported data of them are scarce in litera-
ture, we have not attempted here to predict the effects of
stress on the group-velocity surfaces of structural materials.

When the applied stresses are hydrostatic pressuresp
such thats i j 52pd i j , one can apply the superposition prin-
ciple for the effect of three equal normal stresses acting on a
medium to calculate the group velocities in the medium un-
der hydrostatic pressures. The effect of hydrostatic pressures
p on the elastic constants and the density of solids abounds
in the literature.24,28,29Since the symmetry of a material re-
mains unchanged under hydrostatic pressures, the effect of
hydrostatic pressures on the group velocity in symmetry
planes can be calculated following the same approaches
taken in Ref. 5, whereby the elastic constants at the natural
state are simply replaced by the effective elastic constants
obtained under the hydrostatic pressures.

The effect of stress on the group velocities in nonsym-
metry planes and even the group velocities on the symmetry
planes, which correspond to the wave normals lying in a
nonsymmetry plane, are very difficult to approach analyti-
cally. It may be calculated using the numerical method such
as the Monte Carlo method. This is currently under investi-
gation.

VII. CONCLUSIONS

We have derived closed-form analytic formulas that re-
late both thermodynamic elastic coefficients and stresses to
the group velocities ofPT, QL, andQT modes propagating
in an arbitrary direction on the symmetry planes of a stressed
medium with orthotropic or higher symmetry. Analytic for-
mulas relating the directions of the group velocity and the
corresponding wave normal on the symmetry plane are also
presented for all three modes. These relations can be applied
to determine the group-velocity sheets of the symmetry
planes of the stressed medium and to obtain the mixed-index
elastic coefficients. The group-velocity sections of silicon
which is loaded in the@001# direction with a compressive
stress ofs33521 GPa are shown as a example.
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